Lecture 18, Feb 27, 2023

Application: Renewable Energy & Electricity Markets

- Renewable energy operators are paid for power produced
- Penalties for uncertainty in power production
- Basic quantities:
 - At the start of the hour, wind forecasts power \hat{p}
 - Actually produces power p
 - Market price λ
 - Fees u^+ for overproduction, u^- for underproduction
 - Total revenue is then $\tilde{J} = \lambda p u^{-}(\hat{p} p)^{+} u^{+}(p \hat{p})^{+}$ where $(\cdot)^{+} = \max(\cdot, 0)$
- Suppose p is distributed according to f(p) and CDF F(P); we want to maximize $J = E_p[\tilde{J}]$ over \hat{p}

•
$$E_p[\tilde{J}] = \lambda \int_{-\infty}^{\infty} pf(p) \, \mathrm{d}p - u^- \int_{-\infty}^{p} (\hat{p} - p)f(p) \, \mathrm{d}p - u^+ \int_{\hat{p}}^{\infty} (p - \hat{p})f(p) \, \mathrm{d}p$$

• $\frac{\mathrm{d}J}{\mathrm{d}\hat{p}} = -u^- \left(\int_{-\infty}^{\hat{p}} f(p) \, \mathrm{d}p + (\hat{p} - \hat{p})f(p) \right) - u^+ \left(\int_{\hat{p}}^{\infty} -f(p) \, \mathrm{d}p - (\hat{p} - \hat{p})f(p) \right)$
 $= -u^- F(\hat{p}) + u^+ (1 - F(\hat{p}))$

• Solve for
$$\hat{p}$$
: $-u^{-}F(\hat{p}) + u^{+}(1 - F(\hat{p})) = 0 \implies F(\hat{p}) = \frac{u^{+}}{u^{-} + u^{+}} \implies \hat{p} = F^{-1}\left(\frac{u^{+}}{u^{-} + u^{+}}\right)$

- We know F is invertible, because by definition F is non-decreasing

- What does this tell us?
 - F caps at 1, so if $u^+ \gg u^-$, the ratio is close to 1, therefore $\hat{p} \to F^{-1}(1) = \infty$
 - * If the penalty for overproducing is way bigger than the penalty for underproducing, then it's better to forecast a very big number
 - Conversely $u^+ \ll u^- \implies \hat{p} \to F^{-1}(0) = -\infty$
 - * If the penalty for underproducing is way bigger than the penalty for overproducing, then it's better to forecast a very small number
 - If $u^- = u^+$ then $\hat{p} = F^{-1}\left(\frac{1}{2}\right)$ which is the *median* of the distribution of p
- This is classically known as the newsvendor problem