Lecture 1, Jan 9, 2023

Uncertainty

- Sources:
 - Limited measurements more measurements = less uncertainty, e.g. processes that are difficult to measure
 - Difficult-to-model scenarios, e.g. weather, dice roll
- Probability allows us to be systematic in the face of uncertainty ("be consistent about what we don't know")

The Coin Flip

- Heads or tails
- A fair coin has P(H) = 0.5 = P(T); unbalanced coins have different probabilities, but we must have P(H) + P(T) = 1 because *something* has to happen 100% of the time
- Example: P(H) = 0.3, P(T) = 0.7, then:
 - P(HH) = P(H)P(H) = 0.09
 - P(HT) = P(H)P(T) = 0.21 = P(T)P(H) = P(TH)
 - * This is only true because of *independence*, as the two flips are uncorrelated
 - P(HT or TH) = P(HT) + P(TH) = 0.42
 - P(HT, TH, HH or TT) = 1
 - We can construct a fair coin by setting "heads" to HT and "tails" to TH and ignoring all other outcomes

Core Concepts

Definition

The sample space S is the set of all possible outcomes

• e.g. for a single coin flip, $S = \{H, T\}$; for two coin flips, $S = \{TH, TT, HH, HT\}$

Definition

An event is a subset of a sample space, i.e. some subset of possible outcomes

The *complement* of an event A is $A' = \{ a \mid a \in S, a \notin A \}$, the set of everything in S that is not in A

- e.g. { 1,2,3,4,5,6 } or { even, odd } could both be the set of all events for a die
- Example: $S = \{ (x, y) \mid x^2 + y^2 \le 1 \}$ (the unit circle), $A = \{ (x, y) \mid (x, y) \in S, x \ge 0 \}$, then $A' = \{ (x, y) \mid (x, y) \in S, x < 0 \}$

Definition

The *intersection* of 2 events A and B, $A \cap B$, is everything in S that is in both A and B

The union of 2 events $A \cup B$ is everything in A or B

- e.g. for a die: $\{ even \} \cap \{ n \le 3 \} = \{ 2 \}$
- $A \cap A' = \varnothing, A \cup A' = S$