Lecture 6, Jan 20, 2023

Gauss's Law

Equation	
Electrostatics is governed by two funda In differential form:	mental postulates: $\vec{\nabla} \times \vec{E} = 0$ $\vec{\nabla} \cdot \vec{D} = \rho_v$
In integral form:	$\begin{split} & \oint_C \vec{E} \cdot d\vec{l} = 0 \\ & \oint \!$

- Electrostatics deal with systems with stationary charges; we represent the field with \vec{E} or \vec{D}
 - $-\vec{E}$ is the electric field density with units of V/m = N/C
 - \vec{D} is the electric flux density with units of C/m²
- \vec{E} and \vec{D} are related by the parameter ε : $\vec{D} = \varepsilon_r \varepsilon_0 = \varepsilon \vec{E}$
 - $-\varepsilon$ is the *electrical permittivity* of the material
 - $-\varepsilon_r$ is the *relative permittivity* of the material
 - "Free space" is what you would get in a vacuum $\varepsilon_r = 1$, so $\varepsilon = \varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$; this is similar to in air where $\varepsilon_r = 1.0006$
- Gauss's Law is one of the postulates: $\vec{\nabla} \cdot \vec{D} = \rho_v$
 - In differential form this tells us that at any given point, the divergence of the electric flux density is the same as the volume charge density
- Applying the divergence theorem gives us $\iint_{s} \vec{D} \cdot d\vec{S} = \iiint_{V} \rho_{v} dV = Q_{enc}$ In integral form this tells us that the net electric flux through a closed surface is the net charge
 - enclosed by the surface
- Coulomb's Law can be derived from this, if we assume \vec{D} only has a radial component