Lecture 27, Mar 22, 2023

Generalized Ampere's Law

- Ampere's law becomes $\oint_C \vec{B} \cdot d\vec{l} = \mu_r \mu_0 I_{enc}$
 - Once again the \vec{B} field is affected by the presence of the material μ_r , but \vec{H} is not
- Example: field inside a solenoid
 - Consider a very long solenoid with n turns per meter filled with a magnetic material with relative permeability of μ_r , with current I_0 through the wire; what is \vec{H}, \vec{B} inside the solenoid?
 - $-\vec{H}, \vec{B}$ will be in the same direction, based on RHR, let this be \hat{a}_z so $\vec{B} = B_z \hat{a}_z$
 - Using Ampere's law, with a contour along the edge of the solenoid of length w that encloses the wire
 - When the solenoid is infinitely long, there is no magnetic field outside
 - Therefore $\oint_C \vec{B} \cdot d\vec{l} = wB_z$ since only the piece of the contour inside the material gives a nonzero dot product
 - The enclosed current is $I_0 n w$
 - * For *n* turns per meter, width of *w*, *nw* is the number of turns; therefore nwI_0 is the total current for all these loops
 - $-wB_z = \mu_r \mu_0 n w I_0 \implies B = \mu_r \mu_0 n I_0 \hat{a}_z$
 - If we have N turns over L meters, then $\vec{B} = \frac{\mu_r \mu_0 I_0 N}{I_c} \hat{a}_z$

$$-\vec{H} = nI_0\hat{a}_z = rac{NI_0}{L}\hat{a}_z$$

Ferromagnetic Materials

- On an atomic level, there are 2 major sources of magnetic dipoles:
 - Orbital motion of the electrons around the nucleus
 - * This gives an orbital magnetic dipole moment m_0
 - Electron spin
 - * This gives a spin magnetic dipole moment m_s
 - * Thee two states of spin means that m_s is either parallel or antiparallel to the applied field
- Materials with non-zero internal moments can align $(\mu_r > 1)$
 - Ferromagnetic materials have their fields greatly enhanced (strong alignment) ($\mu_r \gg 1$)
 - Paramagnetic materials have their fields only slightly enhanced (weak alignment) $\mu_r \approx 1, \mu_r > 1$
 - *Ferrimagnetic* materials are in-between and have $\mu_r > 1$ but not too big; they're useful for higher frequency circuits (e.g. ferrites)
- Materials with zero internal moments actually reduces the net magnetic field ($\mu_r < 1$)
 - Diamagnetic materials will have a field in the opposite direction and get repelled by the applied field $(\mu_r \approx 1, \mu_r < 1)$
 - * In superconducting materials there will be perfect diamagnetism (the field is perfectly canceled inside the material); this causes levitation (Meissner effect)

Hysteresis

- When a ferromagnetic material is magnetized, eventually it saturates and B begins to level off even with increasing ${\cal H}$
- When the external field is turned off, B goes back down to B_r , the residual flux density even though there's no more external field, the material stays magnetized
- At this point if we reverse the external current, we first reach the coercive H field or H_c , where the magnetization field disappears
 - At this point the permanent magnetization disappears
- If our applied field \dot{H} varies with time (e.g. a sinusoidal AC current), we will go through the cycle of magnetization-demagnetization over and over

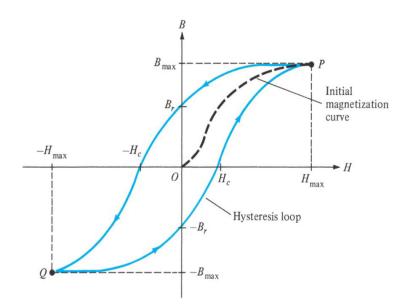


Figure 1: Hysteresis

- This leads to significant energy losses, which we can show to be equal to the area of the hysteresis curve
- Soft magnetic materials have smaller B_r values and narrower hysteresis curves, while hard magnetic materials have larger B_r values and wider hysteresis curves
 - Soft materials are easily magnetized and demagnetized
 - Hard materials are difficult to demagnetize and make for good permanent magnets
 - The wider hysteresis curves of hard materials significantly increase the energy loss due to the magnetization-demagnetization cycles
- Since the relationship between \vec{B} and \vec{H} is no longer linear, for a ferromagnetic material we need to first determine its *operating condition* in order to determine its value of μ_r