Lecture 25, Mar 17, 2023

Ampere's Law

Definition

Ampere's Law in differential form is given by:

$$\vec{\nabla} \times \vec{H} = \vec{\nabla} \times \left(\frac{1}{\mu_r \mu_0} \vec{B}\right) = \vec{J}$$

Where the magnetic field intensity \vec{H} is related to the magnetic flux density \vec{B} as

 $\vec{B} = \mu_r \mu_0 \vec{H}$

In integral form, this is

$$\oint_C \vec{H} \cdot d\vec{l} = \iint_S \vec{J} \cdot d\vec{s} = I_{enc}$$

- Ampere's law is a fundamental law, the analogue of Gauss's law
- At every point in space, the magnetic field intensity has a nonzero curl only if a current density \vec{J} is present at that point
- The integral form tells us that if we take any contour integral of \hat{H} , it is equal to the current crossing through the surface enclosed by that curve
 - Note that the direction of $d\vec{s}$ in relation to C is defined based on the right hand rule (coming from Stokes' theorem), which is what gives us the right hand rule for \vec{B}
- To find \vec{H} from \vec{J} is like finding \vec{E} using Gauss's law; instead of using a Gaussian surface, we use an Amperian loop

- Choose the loop so that:

- * \vec{H} is always tangential or normal to the loop
- * \vec{H} has a constant value where \vec{H} is a tangential
- This means $\int \vec{H} \cdot d\vec{l} = \int H \, dl = HL$ where L is the length of the loop where \hat{H} is tangential to the loop
- For an infinitely long wire in the \vec{a}_z direction, we choose the Amperian loop to be a circle centered on the wire, which gets us $\oint_C \vec{H} \cdot d\vec{l} = 2\pi r H_{\phi} = I_{enc} \implies \vec{H} = \frac{I_0}{2\pi r} \hat{a}_{\phi}$