Lecture 21, Mar 6, 2023

Electric Field Inside Conducting Materials

- When an electric field is applied to a material where there are free charge carriers, it will create a current density \bar{J}
 - Electrons move with a drift velocity \vec{u}_d
- The force on each conductor is $\vec{F}_e = -e\vec{E} = m_e\vec{a} \implies \vec{a} = -\frac{e}{m_e}\vec{E}$ The charge density is $\rho_{ve} = -N_e e$ where N_e is the charge carrier density; so define the current density as $\vec{J} = \rho_{ve} \vec{u}_d$
 - Current density has units of A/m^2 which this relation satisfies
- By convention current density \vec{J} is in the same direction as the electric field \vec{E}
 - $-\vec{u}_d$ would be in the opposite direction as \vec{E} and \vec{J} if the charge carriers were electrons
- How can we model the movement of electrons?
 - Consider the case where there is no \vec{E} field applied, electrons move by thermal agitation and bounce around atoms
 - * There is no net movement since the movements are completely random
 - * The velocity is on the order of 1×10^5 m/s but there is no coordination in direction, so no net movement
 - When a field is applied, there is a net movement in the direction that the field pushes the electrons in
 - * The overall average velocity is the drift velocity $\vec{u}_d = \Delta t \vec{a} \approx \tau \vec{a} = -\frac{\tau e \vec{E}}{m}$
 - * τ is the mean free time, or average time between collisions
 - Since \vec{u}_d is directly connected to current density, higher τ means better conductor Define the mobility $\mu_e = -\frac{e\tau}{m_e}$ so that $\vec{u}_d = \mu_e \vec{E}$
 - - * The mobility takes into account both τ and the type of charge carrier
- Since the current density is current per unit area, $I = \iint_{S} \vec{J} \cdot d\vec{S}$
- Therefore $\vec{J} = \rho_{ve}\vec{u} = -N_e e\left(-\frac{\tau e}{me}\right) = \frac{N_e e^2 \tau}{m_e}\vec{E} = \sigma\vec{E}$

Definition

Ohm's Law in point form:

 $\vec{J} = \sigma \vec{E}$

where $\sigma = \frac{N_e e^2 \tau}{m_e}$ is the conductivity of the material

• Using this we can derive another equation for the boundary condition: $E_{t1} = E_{t2} \implies \frac{J_{t1}}{\sigma_1} = \frac{J_{t2}}{\sigma_2}$

- Combine this to with the boundary condition for \vec{D} we have $\frac{\varepsilon_{r1}\varepsilon_0 J_{n1}}{\sigma_1} - \frac{\varepsilon_{r2}\varepsilon_0 J_{n2}}{\sigma_2} = \rho_s$

- For a steady current interface, J is continuous: $J_{n1} = J_{n2} = J_n$, therefore $\rho_s = J_n \left(\frac{\varepsilon_{r1} \varepsilon_0}{\sigma_1} - \frac{\varepsilon_{r2} \varepsilon_0}{\sigma_2} \right)$

Electric current quantities:

- N_e charge carrier density (number density of charge carriers)
- $\rho_{ve} = -N_e e$ charge density (density of moving charges) $\vec{J} = \rho_{ve}\vec{u}_d$ current density (current per unit area)
- $\vec{u}_d = \mu_e \vec{E} = -\frac{\tau e \vec{E}}{m_e}$ drift velocity (average velocity of moving electrons)
- $\mu_e = -\frac{e\tau}{m_e}$ (electron) mobility (how easily electrons move given an applied electric field)

•
$$\sigma = \frac{N_e e^2 \tau}{m_e}$$
 conductivity

Boundary conditions for current density for a current going from material 2 to material 1:

• Tangential component: $\frac{J_{t1}}{J_{t2}} = \frac{J_{t2}}{J_{t2}}$

• Normal component:
$$\frac{\sigma_1}{\sigma_1} - \frac{\sigma_2}{\sigma_2} = \rho_s$$

• Given a steady current interface, we can find $\rho_s = J_n \left(\frac{\varepsilon_{r1} \varepsilon_0}{\sigma_1} - \frac{\varepsilon_{r2} \varepsilon_0}{\sigma_2} \right)$