Lecture 1, Jan 9, 2023

Maxwell's Equations

	Equation
	Maxwell's Equations:
	Faraday's Law: $\vec{\nabla} \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$ Ampere's Law: $\vec{\nabla} \times \vec{H} = \vec{J} + \varepsilon \frac{\partial \vec{E}}{\partial t}$ Gauss's Law (Electric): $\vec{\nabla} \cdot \vec{E} = \frac{\rho_{\nu}}{\varepsilon}$
l	Gauss's Law (Magnetic): $\vec{\nabla} \cdot \vec{H} = 0$
	In a static field: $\vec{\nabla} \times \vec{E} = 0$ $\vec{\nabla} \times \vec{H} = \vec{J}$ $\vec{\nabla} \cdot \vec{E} = \frac{\rho_{\nu}}{\varepsilon}$ $\vec{\nabla} \times \vec{H} = 0$

- In a static field, electric and magnetic fields are now independent
- Maxwell added the second term in Ampere's Law, connecting electric and magnetic fields

Electrostatics – The Beginning

- The triboelectric series ranks the tendency for different materials to gain or lose electrons
- Coulomb noticed the properties of the electric force (Coulomb's Law)
 - $|\vec{F}_e|$ dependent on $Q_1 Q_2$

$$-|\vec{F}_e| \propto \frac{1}{R^2}$$

- The direction of \vec{F}_e acts along the line connecting Q_1 and Q_2
- Like charges repel, opposite charges attract Mathematically we express this as $|\vec{F}_e| = F_e \propto \frac{Q_1 Q_2}{R^2}$

Definition

Coulomb's Law (scalar form):

$$F_e = k \frac{Q_1 Q_2}{R^2} = \frac{Q_1 Q_2}{4\pi\varepsilon_0 R^2}$$

where $k = 9 \times 10^9 \,\mathrm{Nm^2/C^2}$, $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$ is the permittivity of free space