
Lecture 1, Jan 9, 2023
Maxwell’s Equations

Equation

Maxwell’s Equations:

Faraday’s Law: ∇⃗ × E⃗ = −µ
∂H⃗

∂t

Ampere’s Law: ∇⃗ × H⃗ = J⃗ + ε
∂E⃗

∂t

Gauss’s Law (Electric): ∇⃗ · E⃗ = ρν

ε

Gauss’s Law (Magnetic): ∇⃗ · H⃗ = 0

In a static field:
∇⃗ × E⃗ = 0

∇⃗ × H⃗ = J⃗

∇⃗ · E⃗ = ρν

ε

∇⃗ × H⃗ = 0

• In a static field, electric and magnetic fields are now independent
• Maxwell added the second term in Ampere’s Law, connecting electric and magnetic fields

Electrostatics – The Beginning
• The triboelectric series ranks the tendency for different materials to gain or lose electrons
• Coulomb noticed the properties of the electric force (Coulomb’s Law)

– |F⃗e| dependent on Q1Q2

– |F⃗e| ∝ 1
R2

– The direction of F⃗e acts along the line connecting Q1 and Q2
– Like charges repel, opposite charges attract

• Mathematically we express this as |F⃗e| = Fe ∝ Q1Q2

R2

Definition

Coulomb’s Law (scalar form):
Fe = k

Q1Q2

R2 = Q1Q2

4πε0R2

where k = 9 × 109 Nm2/C2, ε0 = 8.85 × 10−12 F/m is the permittivity of free space

Lecture 2, Jan 11, 2023
The Electric Field

• Expressing everything in terms of forces is cumbersome; using “fields” can simplify this
• While forces can be directly experienced, fields remove the immediate effects
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– An electric force requires two object, a source charge (the thing causing the force), and a test
charge (the thing experiencing the force)

– A field however only requires the source charge and fully characterizes it

• We can define the electric field intensity as E⃗12 = lim
Q2→0

F⃗12

Q12
= lim

Q2→0

1
Q12

k
Q1Q2

R2 â12 = k
Q1

R2 â12

– The electric field has units of [N/C] = [V/m]
– Now we have F⃗12 = Q2E⃗12

Definition

The electric field caused by a charge Q1 is defined as

E⃗12 = k
Q1

R2 â12 = Q1

4πε0R2 â12

The electric field has 4 key properties:
1. E⃗ points away from positive charges
2. E⃗ points towards negative charges
3. E⃗ points along the line connecting the source point to the measurement point
4. E⃗ is linear, so we can superimpose electric fields from multiple charges

The electric field at point R⃗ due to a point charge at R⃗′ is

E⃗ = Q1

4πε0∥R⃗ − R⃗′∥2
â12 = Q1

4πε0∥R⃗ − R⃗′∥3
(R⃗ − R⃗′)

• The first 2 properties are by convention – we always think of the electric field coming from a positive
charge and going into a negative charge somewhere

Position Vectors
• In Cartesian coordinates, a point P (x, y, z) is specified by a position vector R⃗ = xâx + yây + zâz where

âx, ây, âz are the 3 unit vectors
• In cylindrical coordinates, a point is specified by P (r, ϕ, z); unit vectors are âr, âϕ, âz

– âz is constant, but âr, âϕ change based on angle!
– A position vector is described by R⃗ = râr + zâz, because ϕ is encoded in âr

* In Cartesian coordinates âr = cos(ϕ)âx + sin(ϕ)ây

• In spherical coordinates, a point is specified by P (R, θ, ϕ) (note ϕ is the angle in the xy plane!);
unit vectors are âR, âϕ, âθ

– All unit vectors change based on where you are
– A position vector is described by R⃗ = Râr

– âr = sin θ cos ϕâx + sin θ sin ϕây + cos θâz

Lecture 3, Jan 13, 2023
Continuous Charge Distributions

• What is the electric field due to a charged plate?
– Consider a point at P (0, 0, z), and a plate with total charge Q and area A on the xy plane

– Break the plate into pieces, by superposition E⃗tot =
N∑

i=1
E⃗i =

N∑
i=1

Qi(R⃗ − R⃗′
i)

4πε0∥R⃗ − R⃗′
i∥2

– As N → ∞, the summation becomes an integral and Qi become dQ′, which are point charges
* Note primes denote source charge
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– Define the charge density ρs, in this case with area C/m2 and ρs = Q

A

– E⃗tot =
�

S

(R⃗ − R⃗′)
4πε0∥R⃗ − R⃗′∥3

dQ′

* R⃗′ is a function of x and y
• Instead of considering discrete (point charges), which are confined to an infinitesimally small point, in

most practical problems charge is distributed in one or more dimensions

Definition

There are 3 types of continuous charge distributions:
• Linear: Q =

�
ρl dl

ρl = Q

L

• Surface: Q =
�

S

ρs dS

ρs = Q

A

• Volume: Q =
�

V

ρv dV

ρv = Q

V
In each case ρ denotes the charge density, and the subscript denotes the dimensionality

Differential Elements in Orthogonal Coordinate Systems
• In Cartesian coordinates:

– Differential lengths are dx, dy, dz, so a differential length vector is d⃗l = dx âx + dy ây + dx âz

– Differential surface vectors are


ds⃗x = dy dz âx

ds⃗y = dx dz ây

ds⃗z = dx dy âz

– Differential volume is dV = dx dy dz
• In cylindrical coordinates:

– Differential lengths are dr, r dϕ, dz
– Differential length vector is d⃗l = dr âr + r dϕ âϕ + dz âz

– Differential surface vectors are


ds⃗r = r dϕ dz âr

ds⃗ϕ = dr dz âϕ

ds⃗z = r dr dϕ âz

* ds⃗r represents the cylindrical wall
* ds⃗ϕ represents a vertical plane coming out of the z axis
* ds⃗z represents a horizontal plane

– Differential volume is dV = r dr dϕ dz
• In spherical coordinates:

– Differential lengths are dR, R dθ, R sin θ dϕ
– Differential length vector is d⃗l = dR âR + R sin θ dϕ âϕ + R dθ âθ

– Differential surface vectors are


ds⃗R = R2 sin θ dϕ dθ âR

ds⃗ϕ = R dθ dR âϕ

ds⃗θ = R sin θ dϕ dR âθ

– Differential volume is dV = R2 sin θ dR dϕ dθ
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Lecture 4, Jan 16, 2023
Example: Electric Field Above a Charged Disk

• Charged disk of radius a with total charge Q, measured at a point P (0, 0, h)

1. E⃗tot =
�

dE⃗ =
�

S

(R⃗ − R⃗′)
4πε0∥R⃗ − R⃗′∥2

dQ′

2. dQ′ is the differential charge, ρs ds′; in this case ds = dsz so dQ′ = ρsr′ dϕ′dr′ = Q

πa2 r′ dϕ′dr′

3. R⃗ = hâz; R⃗′ = r′âr so R⃗ − R⃗′ = −r′âr + hâz = −r′ cos ϕ′âx − r′ sin ϕ′ây + hâz

4.
�

dE⃗ =
� a

0

� 2π

0

Q
πa2 r′

4πε0 ((r′)2 + h2)
3
2

(−r′ cos ϕ′âx − r′ sin ϕ′ây + hâz)dϕ′dr′

5. The disk is symmetric about the z axis, so there will only be a z component in the total field

6.
�

S

dE⃗ = Qhâz

4π(πa2)ε0

� a

0

� 2π

0

r′

((r′)2 + h2) 3
2

dϕ′dr′ = ρs

2ε0

(
h

|h|
− h√

a2 + h

)
âz

• In general the steps are:
1. Select a coordinate system
2. Find dQ′

3. Find R⃗, R⃗′ and R⃗ − R⃗′

4. Write out the integral
5. Look for symmetry before evaluating the integral!
6. Integrate

• Note if we take r → ∞ we effectively have an infinite plate of charge, then we get E⃗tot = ± ρs

2ε0
âz

Lecture 5, Jan 18, 2023

Lecture 6, Jan 20, 2023
Gauss’s Law

Equation

Electrostatics is governed by two fundamental postulates:
In differential form:

∇⃗ × E⃗ = 0
∇⃗ · D⃗ = ρv

In integral form: �
C

E⃗ · d⃗l = 0
�

S

D⃗ · dS⃗ = Qenc

• Electrostatics deal with systems with stationary charges; we represent the field with E⃗ or D⃗
– E⃗ is the electric field density with units of V/m = N/C
– D⃗ is the electric flux density with units of C/m2

• E⃗ and D⃗ are related by the parameter ε: D⃗ = εrε0 = εE⃗
– ε is the electrical permittivity of the material
– εr is the relative permittivity of the material
– “Free space” is what you would get in a vacuum εr = 1, so ε = ε0 = 8.85 × 10−12 F/m; this is

similar to in air where εr = 1.0006
• Gauss’s Law is one of the postulates: ∇⃗ · D⃗ = ρv
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– In differential form this tells us that at any given point, the divergence of the electric flux density
is the same as the volume charge density

• Applying the divergence theorem gives us
�

s

D⃗ · dS⃗ =
�

V

ρvdV = Qenc

– In integral form this tells us that the net electric flux through a closed surface is the net charge
enclosed by the surface

• Coulomb’s Law can be derived from this, if we assume D⃗ only has a radial component

Lecture 7, Jan 23, 2023
Field Computation Using Gauss’s Law

• Using Gauss’s law we can solve for the field from the charge distribution, but only if we know the
nature of the field beforehand

• We have to make two assumptions:
1. What components does the field have?
2. How does the field magnitude change with space? (i.e. Which variables is it a function of?)

• From these questions we can determine the different regions we have to evaluate Gauss’s law on and
what kind of Gaussian surface is needed

– A Gaussian surface is an imaginary surface on which we find the flux
– We must choose the Gaussian surface wisely to make questions solvable at all; to do this we need

to make use of symmetry
• In order of bring D⃗ out of the flux integral

�
S

D⃗ · dS⃗ = Qenc, we need:
1. S has to be closed
2. S has to be oriented such that D⃗ · dS⃗ = 0 or D dS
3. Over points where D⃗ · dS⃗ = D dS, ∥D⃗∥ should be constant

Lecture 8, Jan 25, 2023
Electric Scalar Potential

• By bringing repelling charges together or attracting charges apart, we do work that is stored; this is the
idea of electric potential

Definition

The electric scalar potential, or voltage ∆V between two points is defined as the work done by an
external agent per unit charge, or

∆V = V2 − V1 = V21 = −
� P2

P1

E⃗ · d⃗l

• In the case where E⃗ is constant, we just have ∆V being the field strength times distance between the
two points

• Note the negative sign: if the electric field does work between the two points, the potential difference is
negative; the electric field always points from high potential to low potential

• Consider a point charge Q at the origin and two points P1 and P2

– ∆V = −
� P2

P1

E⃗ · d⃗l = −
� P2

P1

Q

4πε0R2 âR · d⃗l

– We can choose our path so that we move radially first, and then move along a sphere; this allows
us to get rid of the dot product, because the radial movement is parallel to âR and the spherical
movement is perpendicular
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– We get ∆V = Q

4πε0

(
1

R2
− 1

R1

)
as the potential difference between two points due to a single

point charge
– If we let R1 → ∞ be our reference, then we just get ∆V = V2 = Q

4πε0R2

Definition

The absolute electric potential due to a point charge is

V (R) = Q

4πε0R

This assumes a reference of a charge at R = ∞ having zero potential

• Note the expression for the potential is the same as Coulomb’s law but the R term is not squared
• A surface which has the same value of V over the entire surface is called an equipotential surface

– This could be a physical surface or an imaginary surface
– e.g. a sphere surrounding a point charge is an equipotential surface since potential depends only

on R; for a dipole these are ellipsoids
– All perfect conductors are equipotential surfaces
– The electric field is always perpendicular to equipotential surfaces

Lecture 9, Jan 30, 2023
Electric Scalar Potential of Multiple Charges

• For a point charge not at the origin, we can generalize the expression for electric scalar potential to
V = Q

4πε0R
= Q

4πε0∥R⃗ − R⃗′∥

• With multiple point charges, we can take the superposition as Vtot =
n∑

i=1

Qi

4πε0∥R⃗ − R⃗′
i∥

• For a continuous charge distribution we integrate: V =
� dQ′

4πε0∥R⃗ − R⃗′∥

Lecture 10, Feb 1, 2023
Relating the Electric Field and Electric Potential

• Because ∇⃗ × E⃗ = 0 for electrostatic fields (Faraday’s Law), it is the gradient of a scalar field
– This also means that moving in a closed loop does not do any work

• We let E⃗ = −∇⃗V⃗ where V⃗ is the electric scalar potential
– The negative sign is to make sure the electric field points away from positive charges

• Note E⃗ only cares about the spatial rate of change of V , not its actual value, so it doesn’t matter if the
potential is absolute or relative

Gradient
• The gradient is the direction and magnitude of the maximum spacial rate of change
• The gradient in different coordinate systems is given by:

– ∂V

∂x
âx + ∂V

∂y
ây + ∂V

∂z
âz

– ∂V

∂r
âr + 1

r

∂V

∂ϕ
âϕ + ∂V

∂z
âz
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– ∂V

∂R
âR + 1

R

∂V

∂θ
âθ + 1

R sin θ

∂V

∂ϕ
âϕ

• The factors of 1
r

etc can be thought of as making sure the gradient has the right units

Lecture 11, Feb 3, 2023
Effect of Electric Field on Materials

• If an external electric field is applied to a material, then “excess” or “mobile” charges will be pushed
along by the field

• Based on the amount of mobile charges, most materials fall into 3 categories: conductors, semiconductors,
and dielectrics (insulators)

– In a conductor the band gap is very small so very little energy is needed to promote an electron to
the conduction band

– In a dielectric the band gap is quite large, so a lot of energy is needed for conduction
• The movement of charges creates a current I; we can define a current density J so that I =

�
S

J⃗ · dS⃗

– J⃗ has units of A/m2

Equation

The relationship between current density and an electric field causing the current is

J⃗ = σE⃗

where σ is the conductivity of the material

• This is known as Ohm’s law in microscopic (point) form
• Conductivity characterizes how easily a current flows within that material

– Later we see σ = Nee2τ

me
where Ne is the electron density and τ is the mean free time

– In general σ goes down as temperature goes up as τ decreases when the atoms become more
energetic

• Resistivity is the inverse of conductivity, ρ = 1
σ

with units of Ω m
• Properties of perfect conductors and dielectrics:

– In a perfect conductor, σ → ∞, so no applied field is needed for current to flow, and there is
always zero electric field

– In a perfect insulator, σ → 0, so there is never any current; the electric field can be anything but
the material will not respond

• A perfect conductor will have the same potential everywhere on its surface, so all perfect conducting
surfaces are equipotential; therefore the electric field is always perpendicular to them

Lecture 12, Feb 6, 2023
Polarization

• Consider the effect of a static field on the atoms in an insulator:
– The field inside the insulator, E⃗0, polarizes the bond atoms within the material – the atoms are

stretched, negative charges and positive charges are pushed to different sides
– The insulator has become a dielectric (refers to the separation of the positive and negative charges)
– This separation of charge creates an electric field of its own, the polarization field E⃗n

* Now the total field is reduced: E⃗tot = E⃗0 − E⃗p

– The polarized atoms can be approximated with an electric dipole
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• The dipole is represented by the dipole moment p⃗ = Qd⃗, where d⃗ is the vector connecting the two
charges with −Q and +Q

– d⃗ and thus p⃗ always points from the negative charge to the positive charge by convention

Definition

The dipole moment of a pair of charges −Q and Q, where d⃗ is the vector pointing from the negative
charge to the positive charge, is

p⃗ = Qd⃗

The polarization vector of a material is

P⃗ = lim
∆v→0

1
∆v

N∆v∑
i=1

p⃗i ≈ Np⃗i if p⃗i are the same

where N is the number of atoms per unit volume

• The polarization vector has units of C/m2; it is a measure of the “average” dipole moment per unit
volume

• In this course we are concerned with simple media, that is:
– Linear: The properties of the dielectric do not depend on the electric field strength

* The strength of the polarization is directly proportional to the applied field
– Isotropic: The properties of the dielectric do not depend on the field direction

* The direction of polarization is always parallel to the direction of the applied field
– Homogeneous: The properties of the dielectric do not depend on the electric field position

(i.e. there’s only one type of material)
* The relationship between the polarization and the electric field is the same everywhere within

the material
• For such simple media, P⃗ = ε0χeE⃗

– χe is the electric susceptibility of the material, a unitless quantity – higher χe means higher
polarization

* χe can be a matrix if the material is not isotropic
– Define εr = χe + 1 so that P⃗ = ε0(εr − 1)E⃗ where εr is the relative permittivity of the material

* Therefore D⃗ = εE⃗ = εrε0E⃗
• At the surfaces of the material, there’s no more atoms, we have a negative charge layer and a positive

charge layer, which causes attraction
– This results in the bound charge density ±ρsb (as opposed to the free charge densities ±ρs)
– Therefore E⃗p = ρsb

ε0
or ∥E⃗tot∥ = ∥E⃗0∥ − ∥E⃗p∥ = 1

ε0
(ρs − ρsb)

– This is equivalent to reducing it by a factor of εr: E⃗tot = E⃗0

εr
• In a polarized material:

– E⃗0 is the original field applied, which results in free charge densities
– Bound charge densities ρsb = P⃗ · a⃗n where a⃗n are the outward normal vectors of the surface

* This gives ρsb = ∥P⃗∥ if the polarization vector is normal to the surface
• When dealing with these problems, it’s important to note whether the potential difference or the ρs are

constant
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Summary

To account for polarization in a material, all we need to do is to add the relative permittivity εr:

E⃗ = E⃗0

εr

The polarization induces bound charges, with surface bound charge density given by

ρsb = P⃗ · ân

where ân is the unit normal of the surface; the volume bound charge density is given by

ρvb = −∇⃗ · P⃗

P⃗ is the polarization vector, given by

P⃗ = ε0χeE⃗ = ε0(εr − 1)E⃗ = D⃗ − ε0E⃗

Lecture 13, Feb 8, 2023
Electric Flux Density and Polarization

• D = εrε0E⃗ = εrε0(E⃗0 − E⃗p), εr = χe + 1, P⃗ = ε0χeE⃗ = ε0(εr − 1)E⃗
• χe = ρsb

ε0(E0 − Ep) = ρsb

ρs − ρsb

• εr = χe + 1 = ρs

ρs − ρsb

• D⃗ =
(

ρs

ρs − ρsb

)
ε0

(
ρs

ε0
− ρsb

ε0

)
= ρs

– Note this is for a flat plate capacitor
• In the end the electric flux density relates only to the free charge, but the electric field relates to both

free and bound charge
• Therefore D⃗ = ε0εrE⃗ = ε0E⃗ + P⃗

– Note D⃗ is not something changed by polarization; rather it is the total field E⃗ that changes
– The combination of changing E⃗ and polarization P⃗ produces a constant D⃗, unaffected by dielectric

changes
• D⃗ is the electric flux density or electric displacement vector

– D⃗ is completely material independent
– D⃗ represents the flow, or flux, of the “presence” of charge – it is connected only to the source of

the field (i.e. the free charges)
* This is why

�
S

D⃗ · dS⃗ = Qenc

• E⃗ is the electric field intensity
– It relates to the total charge, both free and bound
– E⃗ comes from the electric force per unit charge
– E⃗ represents the effects of the entire field with all of its charges/forces

Lecture 14, Feb 10, 2022
Dielectric Breakdown

• When a strong enough electric field is applied, even in a dielectric the electrons can jump from the
valence to the conduction band
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– When this happens, the material becomes a conductor; this is referred to as dielectric breakdown
– The field is strong enough to overcome the attractive force between the nucleus and its orbiting

electrons; the atom goes beyond just stretching and the electrons are detached
• The dielectric strength Eb is the maximum electric field that the material can withstand before a current

flows
– EB for air is 3 × 106 V/m
– EB for mica is 200 × 106 V/m

* This is why mica is used for capacitors – the very small inter-plate distance means the same
voltage creates a much larger electric field

• Lightning is a great example of this
– Lightning rods work by concentrating the electric field at its end

Boundary Conditions for the Electric Field in Materials
• Application example: optical fibres

– Low conductivity of the glass reduces conductive power loss
– e.g. copper wire requires signal boosters every 10 km; with optical fibres boosters are only needed

every 100 km or 1000 km
– Optical fibres consists of an outer cylinder (cladding) with an index of refraction on the order of

1.2, and a core cylinder with an index of refraction slightly larger
* Index of refraction is directly related to εr

– A light source shines into the core, and most of the light is reflected and travels down the core
* When the light hits the interface between the cladding and the core, total internal reflection

happens
– Total internal reflection happens due to the boundary conditions
– The fibre is a waveguide that carries electromagnetic waves

• Consider the boundary of two materials 1 and 2, to see how an electric field behaves at the boundary
we apply Maxwell’s equations

• Break the electric field into tangential and normal components; these components are affected differently,
and based on how they are affected the field lines bend

• Consider the tangential components E⃗t1, E⃗t2

– From Faraday’s law
�

C

E⃗ · d⃗l = 0
– We can create a contour right on the boundary with infinitesimal thickness, so we can isolate the

boundary tangential components
–
�

C

E⃗ · d⃗l = Et2∆l − Et1∆l = 0 =⇒ Et1 = Et2 =⇒ Dt1

εr1
= Dt2

εr2
– At the boundary of an interface, tangential components of the field have to be the same

• Consider the normal components D⃗n1, D⃗n2

– From Gauss’s law
�

S

D⃗ · dS⃗ = Qenc

– Use a Gaussian cylinder, with parts just above and just below the boundary, with surface area ∆S
– Through this cylinder we have Dn2 going in from the bottom and Dn1 coming out from the top
– In the limit:

�
S

D⃗ ·dS⃗ = −Dn2∆S +Dn1∆s = ρs∆S =⇒ Dn1 −Dn2 = ρs or n̂2 · (D⃗1 − D⃗2) = ρs

– This gives us εr1ε0En1 − εr2ε0En2 = ρs

– When there is no surface free charge, εr1En1 = εr2En2
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Summary

At the boundary between two dielectrics, taking the normal direction to be pointing from material 2
to material 1:

Et1 = Et2 =⇒ Dt1

εr1
= Dt2

εr2

Dn1 − Dn2 = ρs =⇒ εr1ε0En1 − εr2ε0En2 = ρs

or when there is no free charge at the boundary:

Dn1 = Dn2 =⇒ εr1En1 = εr2En2

Lecture 15, Feb 13, 2023

Lecture 16, Feb 15, 2023
Capacitance

Definition

Given two conductors with a potential difference, the capacitance C between them is defined as

C = Q

∆V
= Q

V

with units of [C/V = F]

• Consider 2 conductors attached to a battery; they will have equal and opposite charges proportional to
the voltage

• Let Q = C∆V ; C is the capacitance, C = Q

∆V
= Q

V
[C/V = F]

– Capacitance is a function of only the conductor geometry and the material separating them
– A large capacitance results in large Q for a small V
– Application notes: typically in circuits there are lots of conductors next to each other, which can

introduce a parasitic capacitance; this capacitance can severely distort high frequency signals

• C = Q

∆V
=


S+ D⃗ · dS⃗∣∣∣− � E⃗ · d⃗l
∣∣∣ =


S+ εrε0E⃗ · dS⃗∣∣∣− � E⃗ · d⃗l

∣∣∣
– S+ is the surface that encloses the positively charged conductor but this could be another conductor

as well
• Example: parallel plate capacitor filled with dielectric with relative permittivity εr

– First we need to find the electric field in the dielectric: E⃗ = ρs

ε0εr
* We can see this from boundary conditions Ddielectric−Dconductor = ρs =⇒ D = Ddielectric = ρs

– ∆V =
∣∣∣∣−� E⃗ · d⃗l

∣∣∣∣ = Ed = ρsd

ε0εr
= Qd

ε0εrS
* Q = ρsS where S is the area of the plate, assuming uniform free charge distribution

– Therefore C = Q

∆V
= Q

Qd
ε0εrS

= ε0εrS

d

– This assumes uniform charge distribution (i.e. plates are effectively infinitely large), and also the
insulation cannot conduct any current

• To maximize capacitance we increase εr or the plate area S, and making the plate spacing D as small
as possible

• Example: capacitance of a spherical capacitor; inner sphere with radius a, outer sphere with radius b,
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dielectric with εr between
– Assume a Q, find E⃗ from it, and then find ∆V
– Assume inner shell has charge +Q and outer shell has charge −Q

– Apply Gauss’s law:
�

S

E⃗ · dS⃗ = Qenc

ε0εr
=⇒ 4πεrε0R2ER = Q =⇒ E⃗ = Q

4πR2εrε0
âR

– Find potential by integration: ∆V =
∣∣∣∣∣
� b

a

E dR

∣∣∣∣∣ = Q

4πεrε0

(
1
a

− 1
b

)
– Therefore C = Q

∆V
= 4πεrε0ab

b − a
– Does this make sense?

* C is directly proportional to εr

* The distance between conductors in the denominator
* The surface area of the conductors is in the numerator

Summary

To find capacitance:
1. Assume some charge Q on the surfaces
2. Use boundary conditions and Gauss’s Law to find D⃗ and E⃗

3. Find voltage ∆V =
∣∣∣∣� E⃗ · d⃗l

∣∣∣∣
4. Calculate capacitance by C = Q

∆V

Lecture 17, Feb 17, 2023
Electrostatic Energy

• The work done to bring a charge from infinity in is −
� P2

−∞
F⃗12 · d⃗l = −Q1

� P2

−∞
E⃗ · d⃗l = Q1V (P2)

– If we being in another charge we have to account for the repulsion of the additional charges already
there

12



Definition

For a collection of point charges, the total stored energy is

We = 1
2

N∑
i=1

QiVi

For a continuous charge distribution this is

We = 1
2

�
V

ρvV dV

where V is the potential of the total system after all the charges have been brought together

In terms of the fields, from ∇⃗ · D⃗ = ρv and E⃗ = −∇⃗V , we have

We = 1
2

�
V

D⃗ · E⃗dV⃗ = 1
2

�
V

ε|E⃗|2 dV

Where the energy density is

We = 1
2D⃗ · E⃗ = 1

2εrε0|E⃗|2 = 1
2

|D|2

εrε0

• The factor of 1
2 accounts for duplication between charge interactions

• Consider the energy stored in a parallel plate capacitor:
– First method: using charges

* We = 1
2

�
ρsV dS = 1

2

�
S

ρsV0 dS = 1
2ρsV0S = 1

2QV0 = 1
2CV 2

0 = 1
2

εrε0S

d
V 2

0

– Second method: using fields
* We = 1

2

�
V

εrε0|E⃗|2 dV

* For a parallel plate capacitor E⃗ has constant magnitude ρs

εrε0
, and the volume is Sd

* Therefore We = 1
2

(
ρs

ε0εr

)2
εrε0Sd = 1

2
Q2

Sεrε0
Sd = 1

2
Q2d

εrε0S
= 1

2
Q2

C

Important

We = 1
2

Q2

C
= 1

2CV 2
0 holds in general; we may find C from energy by C = 1

2
Q2

We
= 2We

V 2
0

Lecture 18, Feb 27, 2023
Laplace’s and Possion’s Equations

• Since ∇⃗ · D⃗ = ρv, we have ∇⃗ · (εE⃗) = ρv

• ∇⃗ × E⃗ = 0 =⇒ E⃗ = −∇⃗V
• Combining these we get Possion’s equation: ∇⃗ · (ε∇⃗V ) = −ρv

• In the case where ρv = 0 we get Laplace’s equation: ∇⃗ · (ε∇⃗V ) = 0
• If the electric field is homogeneous, then we may take out ε and get ∇⃗ · ∇⃗V = −ρv

ε
=⇒ ∇⃗2V = −ρv

ε

13



Equation

Possion’s equation:
∇⃗ · (ε∇⃗V ) = −ρv

In a homogeneous material, this reduces to

∇⃗2V = −ρv

ε

Where there is no charge density, these are called Laplace’s equations

Lecture 19, Mar 1, 2023
Boundary Value Problems

• Motivation: usually we don’t have any idea what the charge distribution ρs is like
• We often know what values of V are on the boundaries of the problem
• By using Laplace’s or Poisson’s equations we can determine E⃗ in a given problem without knowing the

charge densities
• Example: parallel plate capacitor

– Assume ρv = 0 and εr is constant, so we use Laplace’s equation ∇⃗2V = 0

– Assume E⃗ = Eâx, then ∇⃗2V⃗ = d2V

dx2 = 0 =⇒ V (x) = c1x + c2

– Using boundary conditions V (0) = V0, V (d) = 0 we get V (x) = −V0

d
x + V0

• In general, start with Poisson’s equation; if the field is homogeneous we can take out ε; if there is no
charge density then we can use Laplace’s equation

• Then use the equation to double integrate to find V , using boundary conditions to find the constants,
then find E⃗

• Finally from E we may find other quantities such as Q with a variety of methods (Gauss’s Law,
boundary conditions, finding work, etc)

Lecture 20, Mar 3, 2023
Uniqueness Principle

Theorem

If a solution to Laplace’s or Poisson’s equation can be found that satisfies the boundary conditions,
then the solution must be unique

• Example: electric shielding
– What is the voltage and electric field inside a closed conductive shell with no enclosed charge?
– We need Laplace’s equation, with a homogeneous medium ∇⃗2V = 0
– Boundary condition: V = V0 everywhere on the boundary of the shell since it’s a perfect conductor
– The simplest solution is V (x, y, z) = V0; then by the uniqueness principle, we may conclude that

this is the only solution
– Therefore E⃗ = −∇⃗V = 0, i.e. there is no electric field inside the shell at all
– More commonly known as a Faraday cage

* This would still work even in a cage where there are holes in the conductor; as long as the
holes are smaller than the wavelength of the signal, EM waves will be completely blocked out

* In practice the thickness of the shell also matters

14



Method of Images
• Before computers, this method was used to solve challenging EM problems
• When a charge distribution is placed near a perfectly conducting object, the distribution gets “reflected”

in the object, i.e. the field configuration resembles that of a dipole
– There isn’t actually any field in the perfect conductor, but the field outside the conductor is

identical to the case where we have a dipole
– This is caused by the fact that the perfect conductor is an equipotential surface so the field lines

are perpendicular to it, just line the field lines would be all in the same direction halfway between
a dipole

• The charge distribution is reflected and the charge is inverted
• We can take this further and consider the case where the plate is finite, where we have a sphere, where

we have multiple conductors, etc

Lecture 21, Mar 6, 2023
Electric Field Inside Conducting Materials

• When an electric field is applied to a material where there are free charge carriers, it will create a
current density J⃗

– Electrons move with a drift velocity u⃗d

• The force on each conductor is F⃗e = −eE⃗ = mea⃗ =⇒ a⃗ = − e

me
E⃗

• The charge density is ρve = −Nee where Ne is the charge carrier density; so define the current density
as J⃗ = ρveu⃗d

– Current density has units of A/m2 which this relation satisfies
• By convention current density J⃗ is in the same direction as the electric field E⃗

– u⃗d would be in the opposite direction as E⃗ and J⃗ if the charge carriers were electrons
• How can we model the movement of electrons?

– Consider the case where there is no E⃗ field applied, electrons move by thermal agitation and
bounce around atoms

* There is no net movement since the movements are completely random
* The velocity is on the order of 1 × 105 m/s but there is no coordination in direction, so no net

movement
– When a field is applied, there is a net movement in the direction that the field pushes the electrons

in
* The overall average velocity is the drift velocity u⃗d = ∆t⃗a ≈ τ a⃗ = −τeE⃗

me
* τ is the mean free time, or average time between collisions

– Since u⃗d is directly connected to current density, higher τ means better conductor
– Define the mobility µe = − eτ

me
so that u⃗d = µeE⃗

* The mobility takes into account both τ and the type of charge carrier
• Since the current density is current per unit area, I =

�
S

J⃗ · dS⃗

• Therefore J⃗ = ρveu⃗ = −Nee
(

− τe

me

)
= Nee2τ

me
E⃗ = σE⃗

Definition

Ohm’s Law in point form:
J⃗ = σE⃗

where σ = Nee2τ

me
is the conductivity of the material

15



• Using this we can derive another equation for the boundary condition: Et1 = Et2 =⇒ Jt1

σ1
= Jt2

σ2

– Combine this to with the boundary condition for D⃗ we have εr1ε0Jn1

σ1
− εr2ε0Jn2

σ2
= ρs

– For a steady current interface, J is continuous: Jn1 = Jn2 = Jn, therefore ρs = Jn

(
εr1ε0

σ1
− εr2ε0

σ2

)
Summary

Electric current quantities:
• Ne charge carrier density (number density of charge carriers)
• ρve = −Nee charge density (density of moving charges)
• J⃗ = ρveu⃗d current density (current per unit area)

• u⃗d = µeE⃗ = −τeE⃗

me
drift velocity (average velocity of moving electrons)

• µe = − eτ

me
(electron) mobility (how easily electrons move given an applied electric field)

• σ = Nee2τ

me
conductivity

Summary

Boundary conditions for current density for a current going from material 2 to material 1:
• Tangential component: Jt1

σ1
= Jt2

σ2

• Normal component: εr1ε0Jn1

σ1
− εr2ε0Jn2

σ2
= ρs

• Given a steady current interface, we can find ρs = Jn

(
εr1ε0

σ1
− εr2ε0

σ2

)

Lecture 22, Mar 8, 2023
Resistance and Conductance

• Recall that J⃗ = σE⃗, E⃗ = ρJ⃗ where σ is the conductivity and ρ is the resistivity, with 1
ρ

= σ

• Resistance and conductance are macroscopic properties that apply to an entire piece of material rather
than points within the material

• Using Ohm’s law we define resistance as R = V

I
, conductance as G = I

V
= 1

R
• Consider a material with conductivity σ connected to a battery with voltage V ; this creates a field E⃗

that generates a current J⃗

– We know V = −
�

E⃗ · d⃗l and I =
�

S

J⃗ · ds⃗ =
�

S

σE⃗ · ds⃗ where S is the cross-sectional area

– Therefore R = V

I
=

∣∣∣− � E⃗ · d⃗l
∣∣∣�

S
σE⃗ · ds⃗

• Like capacitance, to find the resistance of any material we can assume some voltage and compute how
much current this creates, and then take the ratio

• In the case of a simple conductor with uniform S and σ, V = EL, I = EσS =⇒ R = V

I
= L

σS
– For the uniform area conductor we know E⃗ is constant, because I is constant and therefore J⃗

must be constant, which leads to E⃗ being constant
– This applies to e.g. a cylinder, but not a cone
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– If we don’t have uniform cross-sectional area, R =
� 1

σS
dl where S and σ can be functions of l

* This works even in the case of a non-uniform electric field
* Can be thought of as a collection of infinitesimal resistors in series

• Example: resistance of a coaxial cable filled with dielectric εr

– Use Gauss’s law to find E⃗ = ρsaa

εrε0r
âr

– R =

∣∣∣� E⃗ · d⃗l
∣∣∣�

S
σE⃗ · ds⃗

=

∣∣∣� ρsaa
εrε0r dr

∣∣∣
� 2π

0
� L

0
σρsaa
εrε0a a dz dϕ

=
ln b

a

2πLσ

– When we’re evaluating the bottom integral to find current, we can choose any surface; usually we
choose one so that J⃗ · ds⃗ is easy to evaluate (e.g. a Gaussian surface)

* We only need to integrate over a single surface, in this case a cylinder of radius a

– We can also find this by R =
� 1

σS
dl =

� 1
σ · 2πrL

dr

– Note this assumes that the electric field is uniform down the wire; if the wire were extremely long
we would need to consider how E⃗ changes as you move down the wire, due to resistance of the
conductor and leakage current through the dielectric

Joule’s Law (Power Loss)
• Since current is the result of the electric field doing work on the electrons, the electric field has to do

work to create current
• Power is lost as heat in the system
• Consider an electric field causing a current J⃗ = σE⃗ in a non-perfect dielectric; how much power does it

take to sustain this current?
– Consider a very small region; the charges move at the drift velocity
– ∆P = d∆U

dt
and ∆U = We so ∆P = d

dt

�
F⃗e · d⃗l = d

dt

�
QE⃗ · d⃗l = d

dt

�
ρv∆vE⃗ · d⃗l

– ∆P =
�

ρv∆vE⃗ · d⃗l

dt
= E⃗ · J⃗∆v

Definition

Joule’s law:
P =

�
V

E⃗ · J⃗ dV

relates energy losses in a conductor to the current and electric field in it

Lecture 23, Mar 13, 2023
Magnetostatics

• The magnetic field intensity B⃗ is created by a current I according to the right hand rule; the field forms
a loop around the current-carrying conductor}

• A fundamental postulate is ∇⃗ · B = 0; this means that the magnetic field intensity vector always forms
closed loops

• By convention, B⃗ emanates from the north pole and ends at the south pole

17



Definition

The Lorentz force law: The force felt by a charge q moving with velocity u⃗ in a magnetic field B⃗ is

F⃗m = qu⃗ × B⃗

This makes the total force on a charge moving in an electric and magnetic field

F⃗ = F⃗e + F⃗m = qE⃗ + qu⃗ × B⃗

• Note that a charge that is not moving does not feel any magnetic force; also since the magnetic force is
normal to the direction of velocity, the magnetic force cannot change the speed, only the direction of a
moving charge

• For a current carrying wire, qu⃗ =
�

I d⃗l = IL⃗ so F⃗m = IL⃗ × B⃗

– Therefore two parallel wires will attract each other if they carry currents in the same direction,
and repel each other if they carry currents in different directions

Lecture 24, Mar 15, 2023
Magnetic Vector Potential

• We know ∇⃗ · B⃗ = 0 =⇒
�

S

B⃗ · ds⃗ = 0
– Magnetic flux through a closed surface is always zero
– Magnetic flux is denoted by Φm

• Since the divergence of curl is 0 we can express B⃗ as the curl of a potential A⃗
– B⃗ has units of tesla, or webers per unit area (where weber is the unit of magnetic flux, in volt

seconds)
– A⃗ has units of tesla meters, or webers per unit length
– Note A⃗ does not have relation to energy like V does

Definition

The magnetic vector potential A⃗ is defined such that

B⃗ = ∇ × A⃗

It is directly related to the current as

∇⃗2A⃗ = −µ0J⃗ =⇒ A⃗ = µ0

4π

�
V

J⃗

|R⃗ − R⃗′|
dv′ = µ0

4π

�
L

I

|R⃗ − R⃗′|
dl′

which is the analogue of the Poisson equation, where µ0 is the magnetic permeability

• Note that the magnetic vector potential is always in the same direction as J⃗
• The magnetic flux can be directly determined from the magnetic vector potential:

– Φm =
�

C

A⃗ · d⃗l where Φm is the magnetic flux through any surface with C as its boundary
– This follows directly from Stokes’ theorem

The Biot-Savart Law
• All magnetic phenomenon come from moving charges (in a permanent magnet, this comes from the

movement of charges in the atoms)
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• The Biot-Savart law relates magnetic fields to their sources
• Consider a very small bit of current (a current element or filament, which is part of a larger current

loop)
– This bit of current has position R⃗′ and creates a field at R⃗

Definition

The Biot-Savart law relates the magnetic field intensity to currents:

dB⃗ = µ0I d⃗l × (R⃗ − R⃗′)
4π|R⃗ − R⃗′|3

• I d⃗l is the analogue of dQ
• This is completely analogous to Coulomb’s law, except for the cross product, which represents the right

hand rule
• Given different types of current distributions we can integrate this in different ways to find B⃗:

– Moving charge: B⃗ = µ0

4π

Qu⃗ × (R⃗ − R⃗′)
|R⃗ − R⃗′|3

– Linear current loop: B⃗ = µ0

4π

�
C

I d⃗l′ × (R⃗ − R⃗′)
|R⃗ − R⃗′|3

– Surface current: B⃗ = µ0

4π

�
S

J⃗s × (R⃗ − R⃗′)
|R⃗ − R⃗′|3

ds′

– Volume current: B⃗ = µ0

4π

�
V

J⃗ × (R⃗ − R⃗′)
|R⃗ − R⃗′|3

dv′

• The Biot-Savart law can be derived from A⃗
• e.g. for a strip of length 2a, in the x-y plane extending infinitely in the x direction, the current is

J⃗s ds′ = I

2a
dx′ dy′ âx; find the field at P (0, 0, z)

– dB⃗ = µ0J⃗s × (R⃗ − R⃗′) ds′

|R⃗ − R⃗′|3
– Integrate in x′, y′ since those are the dimensions the strip lives in, ds′ = dx′ dy′

– J⃗s ds′ =
(

I

2a
a⃗x

)
dx dy

– R⃗ = za⃗z, R⃗′ = x′a⃗x + y′ây

– B⃗ =
� ∞

−∞

� a

−a

µ0
(

I
2a

)
âx × (−x′âx − y′ây + zâz)

4π (x′2 + y′2 + z′2)
3
2

dy′ dx′

= µ0I

8πa

� ∞

−∞

� a

−a

−y′âz − zây

(x′2 + y′2 + z′2)
3
2

dy′ dx′

= − µ0I

2πa
tan−1

(a

z

)
ây

* Note we could ignore the âz component because from symmetry and right hand rule we know
the field is going to be in the −ây direction
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Lecture 25, Mar 17, 2023
Ampere’s Law

Definition

Ampere’s Law in differential form is given by:

∇⃗ × H⃗ = ∇⃗ ×
(

1
µrµ0

B⃗

)
= J⃗

Where the magnetic field intensity H⃗ is related to the magnetic flux density B⃗ as

B⃗ = µrµ0H⃗

In integral form, this is �
C

H⃗ · d⃗l =
�

S

J⃗ · ds⃗ = Ienc

• Ampere’s law is a fundamental law, the analogue of Gauss’s law
• At every point in space, the magnetic field intensity has a nonzero curl only if a current density J⃗ is

present at that point
• The integral form tells us that if we take any contour integral of Ĥ, it is equal to the current crossing

through the surface enclosed by that curve
– Note that the direction of ds⃗ in relation to C is defined based on the right hand rule (coming from

Stokes’ theorem), which is what gives us the right hand rule for B⃗

• To find H⃗ from J⃗ is like finding E⃗ using Gauss’s law; instead of using a Gaussian surface, we use an
Amperian loop

– Choose the loop so that:
* H⃗ is always tangential or normal to the loop
* H⃗ has a constant value where H⃗ is a tangential

– This means
�

H⃗ · d⃗l =
�

H dl = HL where L is the length of the loop where Ĥ is tangential to
the loop

• For an infinitely long wire in the a⃗z direction, we choose the Amperian loop to be a circle centered on
the wire, which gets us

�
C

H⃗ · d⃗l = 2πrHϕ = Ienc =⇒ H⃗ = I0

2πr
âϕ

Lecture 26, Mar 20, 2023
Magnetic Dipole

• A magnetic dipole is simply a closed loop of current, characterized by its magnetic dipole moment
m⃗ = ISân, where the direction is determined through the right hand rule and S is the enclosed area

– e.g. for a loop with radius a, we have m⃗ = πa2Iâz

– If the loop has n turns, then the effective I is increased, so the magnetic dipole moment is magnified
by a factor of n

– m⃗ = nISân with units [A m2]
– A magnetic dipole will produce a field in the same direction as the direction it points in

• What happens to a magnetic dipole moment in a B⃗ field?
– The loop will experience some magnetic force F⃗ = IL⃗ × B⃗ (from F⃗m = qu⃗ × B⃗)
– This produces a net torque T⃗ = m⃗ × B⃗
– When m⃗ and B⃗ are aligned, the torque goes to zero; therefore a magnetic dipole will rotate until

its own field is aligned with the applied field
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Magnetization
• All materials have small atomic magnetic dipoles caused by the movement of electrons around the nuclei

– Since they’re all randomly oriented, there is no net field
• In a magnetic material, in the presence of an external magnetic field, the dipoles experience a torque

that aligns them in the same direction as the field
• The overall result is that the small B⃗ fields from the dipoles now all point in the same direction,

producing a net magnetic field
– The magnetic field produced by the dipoles is in the same direction as the external applied field,

so they add together
• A material is magnetic if it allows their atomic magnetic dipoles to be all aligned in the same direction
• Define the magnetization vector M⃗ (akin to P⃗ ’s relationship with p⃗) as an average of the magnetic

dipoles within a material:
– M⃗ = lim

∆v→0

1
∆v

∑
i

m⃗i ≈ Nm⃗ with units [A/m]

• This magnetization leads to a bound current density (surface) J⃗ms = M⃗ × ân where ân is the outward
normal of the surface

– There could also be volume bound current densities
• Now we can define 3 new quantities:

– The magnetic field intensity H⃗ = B⃗

µ0
− M⃗ = B⃗

µrµ0
– The magnetic susceptibility χm, where M⃗ = χmH⃗
– The relative permeability µr = χm + 1
– Like in the electric field case, B⃗ accounts for both bound and free currents, but H⃗ only cares about

free currents

Important

The magnetic flux density in a magnetized material is not always greater than the applied field, since
the magnetic dipole moments can also align to be antiparallel to the applied field, depending on the
material (as a consequence, χm is not necessarily positive, so µr could be less than 1)

• Example: cylindrical permanent magnet, where a constant uniform M = M0âz exists; the cylinder is
defined by −L

2 ≤ z ≤ L

2 , 0 ≤ r ≤ a

– J⃗ms = M⃗ × ân = M⃗ × âr = M0âϕ

– B⃗ =
�

µ0J⃗ms × (R⃗ − R⃗′)
4π|R⃗ − R⃗′|3

a dϕ′ dz′

= µ0

4π

� L
2

− L
2

� 2π

0

M0âϕ × (−aâr + (z − z′)âz)
(a2 + (z − z2)2)

3
2

a dϕ′dz′

= µ0M0

2

(
L
2√

a2 + (z − L/2)2
+

L
2√

a2 + (z + L/2)2

)
âz

– What if L ≫ a?
* B⃗ → µ0M0âz
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Summary

When a magnetic material is exposed to an external applied magnetic field, it is magnetized; the
magnetization is characterized by the magnetization vector,

M⃗ = χmH⃗

where the magnetic field intensity is defined as

H⃗ = B⃗

µ0
− M⃗ = B⃗

µrµ0

where the relative permeability is defined as

µr = χm + 1

The magnetization creates a surface bound current density,

J⃗ms = M⃗ × ân

where ân is the surface normal vector, and also a volume bound current density,

J⃗m = ∇⃗ × M⃗

Lecture 27, Mar 22, 2023
Generalized Ampere’s Law

• Ampere’s law becomes
�

C

B⃗ · d⃗l = µrµ0Ienc

– Once again the B⃗ field is affected by the presence of the material µr, but H⃗ is not
• Example: field inside a solenoid

– Consider a very long solenoid with n turns per meter filled with a magnetic material with relative
permeability of µr, with current I0 through the wire; what is H⃗, B⃗ inside the solenoid?

– H⃗, B⃗ will be in the same direction, based on RHR, let this be âz so B⃗ = Bzâz

– Using Ampere’s law, with a contour along the edge of the solenoid of length w that encloses the
wire

– When the solenoid is infinitely long, there is no magnetic field outside
– Therefore

�
C

B⃗ · d⃗l = wBz since only the piece of the contour inside the material gives a nonzero
dot product

– The enclosed current is I0nw
* For n turns per meter, width of w, nw is the number of turns; therefore nwI0 is the total

current for all these loops
– wBz = µrµ0nwI0 =⇒ B = µrµ0nI0âz

– If we have N turns over L meters, then B⃗ = µrµ0I0N

L
âz

– H⃗ = nI0âz = NI0

L
âz

Ferromagnetic Materials
• On an atomic level, there are 2 major sources of magnetic dipoles:

– Orbital motion of the electrons around the nucleus
* This gives an orbital magnetic dipole moment m0
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– Electron spin
* This gives a spin magnetic dipole moment ms

* Thee two states of spin means that ms is either parallel or antiparallel to the applied field
• Materials with non-zero internal moments can align (µr > 1)

– Ferromagnetic materials have their fields greatly enhanced (strong alignment) (µr ≫ 1)
– Paramagnetic materials have their fields only slightly enhanced (weak alignment) µr ≈ 1, µr > 1
– Ferrimagnetic materials are in-between and have µr > 1 but not too big; they’re useful for higher

frequency circuits (e.g. ferrites)
• Materials with zero internal moments actually reduces the net magnetic field (µr < 1)

– Diamagnetic materials will have a field in the opposite direction and get repelled by the applied
field (µr ≈ 1, µr < 1)

* In superconducting materials there will be perfect diamagnetism (the field is perfectly canceled
inside the material); this causes levitation (Meissner effect)

Hysteresis

Figure 1: Hysteresis

• When a ferromagnetic material is magnetized, eventually it saturates and B begins to level off even
with increasing H

• When the external field is turned off, B goes back down to Br, the residual flux density – even though
there’s no more external field, the material stays magnetized

• At this point if we reverse the external current, we first reach the coercive H field or Hc, where the
magnetization field disappears

– At this point the permanent magnetization disappears
• If our applied field H⃗ varies with time (e.g. a sinusoidal AC current), we will go through the cycle of

magnetization-demagnetization over and over
– This leads to significant energy losses, which we can show to be equal to the area of the hysteresis

curve
• Soft magnetic materials have smaller Br values and narrower hysteresis curves, while hard magnetic

materials have larger Br values and wider hysteresis curves
– Soft materials are easily magnetized and demagnetized
– Hard materials are difficult to demagnetize and make for good permanent magnets
– The wider hysteresis curves of hard materials significantly increase the energy loss due to the

magnetization-demagnetization cycles
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• Since the relationship between B⃗ and H⃗ is no longer linear, for a ferromagnetic material we need to
first determine its operating condition in order to determine its value of µr

Lecture 28, Mar 24, 2023
Magnetic Field Boundary Conditions

• Like the case with the electric field, we wish to find the boundary conditions for the tangential and
normal B⃗ fields across a boundary, between medium µ1 and medium µ2, with the normal pointing from
medium 2 to medium 1

• We can apply Gauss’s law
�

S

B⃗ · ds⃗ = 0 to an infinitely short cylinder right on the boundary, we can
conclude that Bn1 − Bn2 = 0 =⇒ Bn1 = Bn2

– In terms of magnetic field intensity, B⃗ = µrµ0H⃗ =⇒ µr1Hn1 = µr2Hn2
• For the tangential fields we can use an Amperian loop with width ∆L right on the boundary, so�

C

H⃗ · d⃗l = Ht2∆L − Ht1∆L = Ienc = Js∆L where Js is the surface current density on the boundary

– This gives us Ht2 − Ht1 = Js or more formally n̂2 × (H⃗1 − H⃗2) = J⃗s

Summary

Boundary conditions for magnetic fields across two mediums (with surface normal pointing from
material 2 to material 1): For the normal component:

Bn1 = Bn2 =⇒ µr1Hn1 = µr2Hn2

For the tangential component:
Ht2 − Ht1 = Js

for a Js normal to the tangential component, or

n̂2 × (Ĥ1 − Ĥ2) = J⃗s

• Due to this, as the field travels from a material with a low µ to one with high µ, it will be bent towards
the surface (tangential component becomes larger)

– For ferromagnetic materials µr can be really high, so the field becomes essentially entirely tangential
– This can be used to perform magnetic shielding

Lecture 29, Mar 27, 2023
Magnetic Circuits: Example

• Example: toroid with N windings of wire carrying current I0, with a piece cut out from it; what is B⃗
in that gap?

– Boundary conditions have to be satisfied at the gap
– Ignoring fringing effects, we would only have a Bn, so since Bn stays the same across a boundary,

B⃗ also stays the same
– If the current creates a field with intensity B0, then Hcore = B0

µrcµ0
, Hair = B

µ0
* Typically Hcore ≪ Hair

– Apply Ampere’s law with a contour aligned with the field:
�

C

H⃗ · d⃗l = HcoreLcore + HairLair = NI0

* Since we have a toroid, we take L to be the mean distances
– This gives B0 = NI0

Lc

µrµ0
+ Lg

µ0
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– To get flux, approximate as Φ =
�

S

B⃗ · ds⃗ = B0S = NI0
Lc

µrµ0S + Lg

µ0S

• We can interpret NI0 as a “voltage” of sorts, and the terms Lc

µrµ0S
and Lg

µ0S
to be like “resistances”;

this way we can think of this as a magnetic circuit, with “current” being the flux
• NI0 is Vmmf , or the magnetomotive force (MMF); Lc

µrµ0S
is R, or the reluctance

– MMF is the driving force in the same way voltage (electromotive force, EMF) is the driving force
in an electric circuit

– Reluctances resist the flux
– In this case the reluctance of the core is much smaller than the reluctance of the air gap

Lecture 30, Mar 29, 2023
Magnetic Circuits

• In a magnetic circuits, sources are MMF, Vm = NI0 where I0 is the current and N is the number of
loops

– The direction of the winding determines the direction of the source
• Reluctance R = L

µS
is analogous to resistance in an electric circuit

• The magnetic flux Φi through the cross-section is analogous to electric current
• Permeability µ is analogous to conductivity σ in an electric circuit
• The usual laws of circuits apply:

–
∑

j

Vmj =
∑

k

RkΦk for a loop, like KVL

–
∑

i

Φi = 0 for a node, like KCL

• Using the normal circuit analysis techniques (nodal, mesh analysis), we can find all fluxes
• To find the field, we assume a constant B in each cross section, so B = Φ

S

Self and Mutual Inductance
• The field created by a current can cause fluxes in its own loop, or other loops

Definition

Inductance is defined as the amount of flux produced by a source per unit source,

L = Λ
I

= NΦ
I

where Λ = NΦ is the flux linkage; it is the dual of capacitance

Both self and mutual inductance exist, with

Lab = NbΦab

Ia

denoting the inductance in b caused by a

• Mutual inductances L12 = L21
• Example: self-inductance of a toroid, magnetic core with N cores carrying current I0

– First find the current, from there find the field, then flux, then inductance

25



– Using Ampere’s law with a contour aligned with the field, 2πrB = µrµ0N1I1 =⇒ B⃗ =
µrµ0N1I1

2πr
âϕ

– Integrate across the cross-section, Φ11 =
�

B⃗1 · ds⃗1 =
� h

0

� b

a

µrµ0N1I1âϕ

2πr
· âϕ dr dz

– Result: L11 = µrµ0N2
1 h

2π
ln b

a
– Notice:

* More turns directly leads to greater inductance
* Greater area also leads to greater inductance
* This only depends on geometry and material, never the current, etc

Lecture 31, Mar 31, 2023
Mutual Inductance Example

• Mutual inductance is usually denoted L12 = M = L21; the fact that the mutual inductances go both
ways is a result of the reciprocity rule

• Example: small circular loop of radius a, a distance d from an infinite wire carrying I1; what is the
mutual inductance of 1 due to 2, L21?

– We can instead find L12 since we don’t know how to find the flux through an infinitely long wire
– Approximate flux from the infinite wire as B1 ≈ µ0I1

2πd
(i.e. take the field at the centre of the circle),

because the loop is small
– Φ12 ≈ µ0I1

2πd
(πa2)

– L12 = L21 = M = N2Φ12

I1
= µ0a2

2d

Magnetic Energy
• Like how electric potential energy is the energy it took to build up a collection of charges, magnetic

potential energy is the energy it took to create a current distribution
• For free current distributions, this is due to Lenz’s law – the field will oppose a change in current
• For bound current distributions, this is the energy required to align the magnetic dipoles within the

material

Definition

The stored magnetic potential energy of a current distribution is

Wm = 1
2

�
v

B⃗ · H⃗ dv = 1
2

�
v

µrµ0|H⃗|2 dv

The magnetic energy density is then
wm = 1

2 B⃗ · H⃗

• Example: stored magnetic energy within an infinitely long solenoid
– H = nI, B = µ0µrnI by Ampere’s law

– Wm = 1
2

�
v

µrµ0|H⃗|2 dv = 1
2µrµ0(πa2l)(n2I2) = µrµ0πa2N2I2

2l

• The energy stored in an inductive element is Wm = 1
2LI2, which holds here as well

– Often inductance is easier to find by first finding the energy and then solving for L
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• Example: energy storage in coupled circular toroids – what is their self inductance, mutual inductance,
and the energy stored?

– First find B1, B2 from Ampere’s law, with a loop concentric to the toroids going through them
– We will approximate B1 = N1I1µrµ0

2πr0
by assuming a constant B through the cross section (so the

expression isn’t a nightmare)
– B1 = N2I2µrµ0

2πr0

– We can write the energy as Wm = 1
2L11I2

1 + 1
2L22I2

2 + 1
2L12I1I2 + 1

2L21I1I2

* The first 2 terms are the self-energies; the second 2 terms are the mutual energies
– To find L11, L22 we first find Wm for the toroids
– To find L12, we integrate B⃗1 · H⃗2, over the volume of the outer toroid
– The volumes are chosen to be everywhere the field exists – in this case, we only consider the space

in the toroids, since by Ampere’s law the fields are zero outside them

Lecture 32, Apr 3, 2023
Time-Varying Fields: Overview

• So far we’ve discussed only static charges and steady currents; for these cases, electricity and magnetism
are separate entities

• With time-varying charges and currents, electricity and magnetism are now related by Maxwell’s
equations:

– ∇⃗ × E⃗ = −∂B⃗

∂t

– ∇⃗ × H⃗ = J⃗ + ∂D⃗

∂t
– ∇⃗ · D⃗ = ρv

– ∇⃗ · B⃗ = 0
• Now changes in the electric field induce changes in the magnetic field and vice versa, which allows

electromagnetic waves

Faraday’s and Lenz’s Laws
• A changing magnetic flux causes a current to flow in a closed loop; this means an electromotive force

(EMF) is created
• Faraday’s law states that the EMF induced in a circuit is directly proportional to the time rate of

change of the magnetic flux linking that circuit

• The EMF is the amount of work done per unit charge, or Vemf =
�

C

F⃗e · d⃗l

q
=
�

C

E⃗ · d⃗l

– Because F⃗ = qE⃗ + qu⃗ × B⃗, an EMF can be caused by an electric force, a magnetic force, or a
combination of both

– Notice since the electric field is conservative in electrostatics, the EMF is zero without time-varying
fields

Equation

Faraday’s Law:

∇⃗ × E⃗ = −∂B⃗

∂t
⇐⇒ Vemf =

�
C

E⃗ · d⃗l = − ∂

∂t

�
S

B⃗ · ds⃗ = −∂Φ
∂t

• Electric fields induced by magnetic flux changes are not conservative, which is how EMF can be zero
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• If the loop is closed, then the EMF will cause a current to flow, Iemf = Vemf

R
– Lenz’s law: The direction of this current is such that the magnetic field it produces opposes the

original change in the magnetic field
– Lenz’s law is why there is a negative sign on Faraday’s law
– The field is not opposing the field, but opposing the change (e.g. if the field is up but decreasing,

the induced current produces a field that still points up, to compensate the decrease)
• Lenz’s law is a statement of the conservation of energy; if the induced current flowed the other way, it

would lead to a positive feedback loop and violate conservation of energy
• With multiple turns in the loop, Vemf = −N

∂Φ
∂t

= −N
∂

∂t

�
S

B⃗ · ds⃗ since every turn experiences the
same EMF

• To cause this change in the flux, we could either change B⃗ itself or change the surface S (e.g. ex-
pand/shrink, change in orientation)

– Changes in flux caused by changes in B⃗ causes an EMF known as the transformer EMF
* This is created by the induced electric force

– Changes in the flux caused by changes in S is known as a motional EMF
* This is caused by moving charges in the presence of a B⃗

• Example: transformer EMF: find induced Vemf in a torus, if I(t) = I0 cos(ωt) passes through the centre,
N turns of wire, inner diameter a, outer diameter b, height c

– B⃗(t) = µI(t)
2πr

– Φ(t) =
�

S

B⃗(t) · ds⃗ =
� b

a

� 0

−c

µI(t)
2πr

dz dr = µcI(t)
2π

ln b

a
=

µc ln
(

b
a

)
2π

I0 cos(ωt)

– Vemf = −N
∂Φ
∂t

=
Nµc ln

(
b
a

)
I0ω

2π
sin(ωt)

– Notice: Vemf = V0 sin(ωt) = L
dI

dt

Lecture 33, Apr 5, 2023
Transformer EMFs

• In the case of transformer EMFs the surface’s relationship with B⃗ says constant
• Vemf = −N

∂Φ
∂t

= −N

�
S

∂

∂t
B⃗ · ds⃗

– The Φ is total flux flowing through the loop; this includes both applied and the flux caused by the
induced EMF

– The induced EMF/current, through self inductance, will also cause its own EMF
– Vemf = −∂Φnet

∂t
= − ∂

∂t
(Φapp + Φind)

• We can account for the effect of the induced current by including an inductor, V = L
dIind

dt
, so

Vemf = RIind + L
dIind

dt
• In general to actually find the induced current we need to solve a differential equation; but often we

will just ignore the effects of the induced current, so Iind ≈ Vemf

R

– This is a reasonable assumption when the self-inductance L is small or dI

dt
is small

Important

At lower frequencies, self-inductance can be ignored; however, at higher frequencies, self-inductance
must be accounted for through differential equations as they can have major impacts on overall
behaviour
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Lecture 34, Apr 10, 2023
Example: Transformers

• From a magnetic circuit perspective we have 2 sources, N1i1 and N2i2, and a resistance Rc = lc
µrµ0S

• We obtain N1i1 − N2i2 = RcΦtot by KVL
• Making the approximation that µr → ∞ we get the relation for an ideal transformer: i1

i2
= N2

N1
• In reality, the core will not be perfect and there will be flux leakage so this relation is not exact
• With higher frequencies this becomes more noticeable, and we also see a phase shift in the output

– We have losses in the wire resistances, hysteresis loss, eddy current losses, self-inductances (which
become problematic at higher frequencies), etc

• The transformer becomes less ideal as frequency increases, with reduced output amplitude and increased
phase shift

• Idealized formulas work fine for power distribution systems which are typically 60 Hz, but at higher
frequencies approximations fall apart

Eddy Currents
• Changing B⃗ leads to a changing E⃗, which will induce a J⃗ in a conducting material
• These are referred to as “eddy currents” since they circulate
• Consider an applied field B⃗(t) = B0 cos(ωt)âz on a cylinder made of a lossy material with conductivity

σ

– ∇⃗ × E⃗ = −∂B⃗

∂t
= B0ω sin(ωt)âz

– 1
r

(
∂

∂r
(rEϕ) − ∂Er

∂ϕ

)
= B0ω sin(ωt)âz

– We can deduce ∂Er

∂ϕ
= 0 and so E⃗ = B0ωr sin(ωt)

2 âϕ

– This gives us eddy currents J⃗ = σB0ωr sin(ωt)
2 âϕ

• These eddy currents generate fields of their own that oppose the original field; this causes the effect of a
magnet falling slower in a metallic tube

– This can be used in applications such as frictionless braking
– However one disadvantage is that the braking force reduces as the speed slows, since the braking

force is proportional to the rate of change of the field

Lecture 35, Apr 12, 2023
Motional EMFs

• We can think of it in 2 perspectives, either due to changing magnetic flux Vemf = −∂Φ
∂t

or from a
perspective of magnetic force F⃗m = qu⃗ × B⃗

• Electrons in a moving conductor will have some velocity due to the movement of the conductor as a
whole, so in the presence of a field they experience a force, causing an EMF

• This gives us Vemf =
�

C

F⃗m · d⃗l

q
=
�

C

(u⃗ × B⃗) · d⃗l

– The u⃗ only exists on the moving parts of the conductor, so we can ignore any stationary parts
– Note electrons have negative charge

• Application note: if we have a loop rotating in a uniform magnetic field, then B⃗ · dS⃗ will vary as cos(ωt),
so we will produce a sinusoidal AC voltage

– Vemf = B0Sω sin(ωt)
– Note the amplitude scales directly with frequency, and the output frequency is the same as the
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input frequency of the turning
– What if we used an AC current to produce the field in the first place?

* The EMF will now be the total EMF, a combination of both the transformer and motional
EMFs

* Vemf = −N
∂Φ
∂t

= −N
∂

∂t

�
B0 sin(ωt)âz · ds⃗

* The dot product introduces another cosine, so we end up integrating the product of a sine
and cosine

* This gives us a resulting voltage that varies with a frequency of 2ωt

Lecture 36, Apr 14, 2023
Maxwell’s Contribution – Displacement Current

• Ampere’s law breaks down when we consider a simple circuit with a capacitor and a surface through
the middle of the capacitor

• A new type of “current” has to be considered – the displacement current

Definition

The displacement current is defined as

J⃗d = ∂D⃗

∂t

with Ampere’s law becoming
∇⃗ × H⃗ = J⃗ + J⃗d

or in the integral form: �
C

H⃗ · d⃗l =
�

S

(
J⃗ + ∂D⃗

∂t

)
· ds⃗ = Ic + Id

• The displacement current was initially an educated guess by Maxwell which was experimentally verified
later

• Unlike J⃗ , the displacement current J⃗d is not due to the movement of charges
• This now allows the existence of electromagnetic waves – a change in D⃗ induces a change in H⃗ by

Ampere’s law, and a change in H⃗ induces a change in D⃗ by Faraday’s law
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