Lecture 13, Mar 9, 2023

Cross-Bridge Cycle

- 1. Binding
 - Calcium from the SR (released when muscles are excited via ACh) allows the attachment of myosin heads to binding sites on the actin
 - This forms cross-bridges that attach the myosin to the actin
 - Without calcium binding cannot start
 - ATP is used to push calcium back into the reservoirs using SERCA pumps

2. Bending

- Once the binding happens, the head of the myosin rotates
- Each head is about 5 piconewtons of force
- ADP is used here to power this
- 3. Detachment
 - ATP attaches to the myosin head, which breaks the cross-bridge
 - Without ATP, the myosin heads are stuck and cannot be detached, so no further muscle movement can occur
 - This is the reason for rigor mortis without ATP muscles are stuck
- 4. Energization
 - As soon as ATP is attached, it becomes ADP, and the head becomes energized
 - If there's more calcium available, the cycle repeats again

What Affects Tension of a Single Fibre?

- 1. Action potential frequency
 - Each action potential causes a muscle twitch
 - For a single action potential, after a few ms to allow the calcium being pumped, tension increases during the contraction phase; then tension decreases during the relaxation phase
 - The latent period is the time between the stimulation and contraction
 - Contraction and relaxation time together is about 100 ms
 - Multiple action potentials cause twitch summations like spatial summations of action potentials
 - As the frequency of action potentials increase, the tension increases up to an upper limit (*tetanus*) and the muscle stays contracted instead of twitching
 - This happens at around 60 Hz for some muscles
- 2. Fibre length
 - Muscles can be much longer or shorter than resting length
 - At resting muscle length, there is optimal overlap, when the most tension could be produced; if the muscle gets longer or shorter the force decreases
 - At 70% (contracted muscle) there is more overlap, and force drops sharply
 - At 130% (stretched muscle) there is less overlap, force also drops but less sharply
 - Between 70% and 130% is usually what happens within the body; under experimental conditions it's possible to stretch the muscle so much that there is no more binding so no tension can be produced
 - There is also some passive tension produced by the muscle as it gets stretched, like a spring

 The passive tension is added onto the active tension
- 3. Fibre diameter
 - If each myofibril gets bigger, it can develop more tension (fibre hypertrophy)
 - If more myofibril gets packed into a single fibre, it can also develop more tension (fibre splitting/hyperplasia)
 - Bigger filaments will exert more tension on z-disc connections when fibres contract, which can cause it to snap
 - When z-discs snap, they become separate myofibrils which is how hyperplasia happens
- 4. Fatigue
 - Different types of fibre types have their tension fall off in different ways

- Slow-oxidative fibres have nearly constant tension, up to an hour
- Fast-oxidative glycolytic fibres exert good tension up to 10 minutes but decrease after that; after an hour they exert nearly no tension
- Fast-glycolytic fibres get fatigued much faster, with tension dropping rapidly at around 2 seconds
 - * e.g. chicken breast because chickens can fly for a very short duration
- 5. Fibre Type

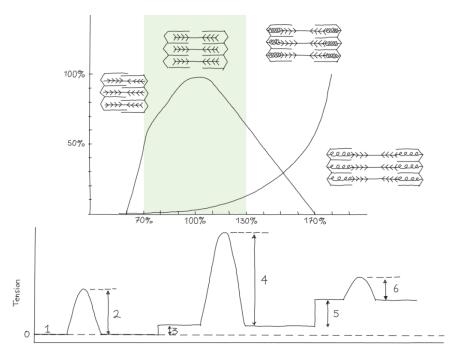


Figure 1: Combination of the effects of active (stimulated) and passive tension

	Slow-Oxidative Fibers (Type 1)	Fast-Oxidative- Glycolytic Fibers (Type 2A)	Fast-Glycolytic Fibers (Type 2X)
Fiber diameter	Small	Largest	Large
Rate of fatigue	Slow	Intermediate	Fast
Size of motor neuron innervating fiber	Small	Intermediate	Large

Figure 2: Comparison of fibre types

What Affects Tension of Multiple Fibres?

- 1. Number of fibres per motor unit
 - Motor units are stimulated together by nerves

- More fibres in a single motor unit means more power
- Motor units can consist of multiple muscle cells in a single fascicle, but they don't have to consist of the whole fascicle
 - This can account for fatigue as different motor units are switched around
- Different types of fibres can be stimulated to produce tension that is a sum of the different types 2. Number of active motor units
- - Different neurons excite different motor units
 - More neurons stimulate more motor units which creates more power
 - All these motor units would be within the same fascicle

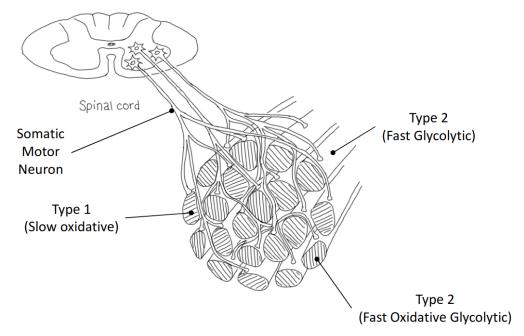


Figure 3: Structure of somatic neurons to muscle fibres