Lecture 9, Oct 6, 2023

Optimization

An optimization problem in general seeks to minimize f(x), subject to g(x) = 0 (equality constraints)
and h(x) > 0 (inequality constraints), where f : R" — R, g : R" — R™ h : R" — R?

o Note that argmin f(x) = argmax(—f(x)), so maximisation and minimization are interchangeable
e Some applications in robotics:
— Motion planning: finding the most efficient path through a cluttered environment
— Control: finding the sequence of inputs that cause a system to stay as close to a desired trajectory
as possible
— Machine learning: find a hypothesis/model that best explains the input data
— Computer vision: matching an image to an existing map for localization
— Reinforcement learning: optimizing a robot’s performance over many training runs
e Example: steering a unicycle robot to follow the = axis by controlling wy, with a constant vy
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— Problem: given an initial condition (yo,6y) find a sequence { wy,...,wk } such that the cost
K
function, f = Z(mEka + rw,f), is minimized
k=0

— Q,r are the optimization parameters
* In this problem, if we're following our desired trajectory, then the optimal x; = x* for all k
should be zero, therefore xj, is the error
* @ is a matrix that weights each component of the error
* The term rwj encourages the algorithm to make less aggressive turns
— The decision variable is w = [wg wy e wK]
— The vehicle dynamics are the equality constraints
— Inequality constraints can be e.g. |wi| < Wmax
— This is an example of model predictive control: finding the optimal set of control inputs to execute
a trajectory for the next time period

Unconstrained Optimization

o Unconstrained optimization is optimization without equality or inequality constraints, i.e. minimizing
only f(x)

A point * € R" is a global minimum of f: R™ — R if

x* is a local minimum if
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of steepest ascent; so —V f is the direction of steepest descent

o Assuming f(x) is differentiable, then v f= € R™™ describes the direction



e If x, is a local minimum, then v f(x,) = 0, which is a necessary but not sufficient condition for
minimization

Definition

A stationary point of f is a point € R™ satisfying ﬁf(:c) =0.

Theorem

First-Order Optimality condition: If x is a local minimum of f, then x is a stationary point. Note
that being a stationary point does not imply that « is a local minimum.

o A common strategy is to then find all stationary points x;, compute f(x;) for all the points, and find
the point with the lowest f(x;)
— This is guaranteed to work, but it can be very hard to find all the local minima
— Note we also need to check the boundaries with  — +o0, e.g. if the function asymptotically
converges

Definition

The Hessian matrix for a twice-differentiable f is the symmetric matrix
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If (and only if) =* is a stationary point, and H(x*) is positive-definite (i.e. Vv, v’ Hfv > 0, or that
all eigenvalues are real and positive), then x* is a local minimum. This is the Second-Order Optimality
Condition.

e Note the Hessian reduces to a second derivative in the single-dimensional case

1
 This condition works because at a stationary point f(x) ~ f(x*) + §($ —x*) ' Hy(z*)(x — =*) since
the gradient disappears, so if Hy(x") is positive-definite, this expression is guaranteed to be greater

than f(x™)
» Note also:
— If Hy(x") is negative definite, then =™ is a local maximum
— If Hy(x") is indefinite (positive and negative eigenvalues), then Hy(x*) is a saddle point
— If H¢(f") is noninvertible (at least one zero eigenvalue), then odd things can happen, e.g. multiple
local minima next to each other (flat function)

A function f: R"™ — R is convez if
Vay # xo,Va € (0,1), f((1 — @)z + axs) < (1 — a)f(x1) + af (z2)

f is said to be strictly convex if the < is replaced with a < in the above expression.

o Intuitively, this says that if we took two values x1, x2, then all the values of f in between the points
will lie below the line connecting the two points



Figure 1: Ilustration of convexity.

A local minimum of a convex function f : R™ +— R is necessarily a global maximum.

e This can be proven by contradiction

o fis convex if Hy(x) is positive definite for all
e Convex functions are much easier to work with, but in the real world, few functions are actually convex

— Sometimes we can reformulate or relax specific parameters to make the function convex
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