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Optimization

Definition

An optimization problem in general seeks to minimize f(x), subject to g(x) = 0 (equality constraints)
and h(x) ≥ 0 (inequality constraints), where f : Rn 7→ R, g : Rn 7→ Rm, h : Rn 7→ Rp

• Note that argmin f(x) = argmax(−f(x)), so maximisation and minimization are interchangeable
• Some applications in robotics:

– Motion planning: finding the most efficient path through a cluttered environment
– Control: finding the sequence of inputs that cause a system to stay as close to a desired trajectory

as possible
– Machine learning: find a hypothesis/model that best explains the input data
– Computer vision: matching an image to an existing map for localization
– Reinforcement learning: optimizing a robot’s performance over many training runs

• Example: steering a unicycle robot to follow the x axis by controlling ωk with a constant vk

– Dynamics:
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– Problem: given an initial condition (y0, θ0) find a sequence { ω0, . . . , ωK } such that the cost

function, f =
K∑

k=0
(xT

k Qxk + rω2
k), is minimized

– Q, r are the optimization parameters
* In this problem, if we’re following our desired trajectory, then the optimal xk = x∗ for all k

should be zero, therefore xk is the error
* Q is a matrix that weights each component of the error
* The term rω2

k encourages the algorithm to make less aggressive turns
– The decision variable is ω =

[
ω0 ω1 · · · ωK

]T

– The vehicle dynamics are the equality constraints
– Inequality constraints can be e.g. |ωk| ≤ ωmax
– This is an example of model predictive control: finding the optimal set of control inputs to execute

a trajectory for the next time period

Unconstrained Optimization
• Unconstrained optimization is optimization without equality or inequality constraints, i.e. minimizing

only f(x)

Definition

A point x∗ ∈ Rn is a global minimum of f : Rn 7→ R if

∀x ∈ Rn, f(x∗) ≤ f(x)

x∗ is a local minimum if

∃ε > 0 s.t. ∀x ∈ Rn, ∥x − x∗∥2 < ε =⇒ f(x∗) ≤ f(x)

• Assuming f(x) is differentiable, then ∇⃗f =
[

∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]T

∈ R1×n describes the direction

of steepest ascent; so −∇⃗f is the direction of steepest descent
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• If xo is a local minimum, then ∇⃗f(xo) = 0, which is a necessary but not sufficient condition for
minimization

Definition

A stationary point of f is a point x ∈ Rn satisfying ∇⃗f(x) = 0.

Theorem

First-Order Optimality condition: If x is a local minimum of f , then x is a stationary point. Note
that being a stationary point does not imply that x is a local minimum.

• A common strategy is to then find all stationary points xi, compute f(xi) for all the points, and find
the point with the lowest f(xi)

– This is guaranteed to work, but it can be very hard to find all the local minima
– Note we also need to check the boundaries with x → ±∞, e.g. if the function asymptotically

converges

Definition

The Hessian matrix for a twice-differentiable f is the symmetric matrix

Hf (x) =


∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn... . . . ...
∂2f

∂xn∂x1
· · · ∂2f

∂xn∂xn


If (and only if) x∗ is a stationary point, and Hf (x∗) is positive-definite (i.e. ∀v, vT Hf v > 0, or that
all eigenvalues are real and positive), then x∗ is a local minimum. This is the Second-Order Optimality
Condition.

• Note the Hessian reduces to a second derivative in the single-dimensional case
• This condition works because at a stationary point f(x) ≈ f(x∗) + 1

2(x − x∗)T Hf (x∗)(x − x∗) since
the gradient disappears, so if Hf (x∗) is positive-definite, this expression is guaranteed to be greater
than f(x∗)

• Note also:
– If Hf (x∗) is negative definite, then x∗ is a local maximum
– If Hf (x∗) is indefinite (positive and negative eigenvalues), then Hf (x∗) is a saddle point
– If Hf (f∗) is noninvertible (at least one zero eigenvalue), then odd things can happen, e.g. multiple

local minima next to each other (flat function)

Definition

A function f : Rn 7→ R is convex if

∀x1 ̸= x2, ∀α ∈ (0, 1), f((1 − α)x1 + αx2) ≤ (1 − α)f(x1) + αf(x2)

f is said to be strictly convex if the ≤ is replaced with a < in the above expression.

• Intuitively, this says that if we took two values x1, x2, then all the values of f in between the points
will lie below the line connecting the two points
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Figure 1: Illustration of convexity.

Theorem

A local minimum of a convex function f : Rn 7→ R is necessarily a global maximum.

• This can be proven by contradiction
• f is convex if Hf (x) is positive definite for all x
• Convex functions are much easier to work with, but in the real world, few functions are actually convex

– Sometimes we can reformulate or relax specific parameters to make the function convex
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