Lecture 8, Oct 4, 2023

Rules of Thumb for ODEs

- Consider the ODE: $\dot{x} = -\frac{1}{\tau}x, x(0) = x_0$ The solution is $x_0 e^{-\frac{1}{\tau}t}$

 - $-\tau$ is the *time constant* of the system
 - Numerical stability for forward Euler requires $\left|1 \frac{h}{\tau}\right| < 1 \implies 0 \le h \le 2\tau$
 - So for the system to be stable, h depends on τ
 - In general, how can we determine the simulation parameters such as simulation step size h and simulation time T for an arbitrary ODE?
- Consider $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x}$ with no input
 - Depending on the eigenvalues the solution can behave differently shown in the diagram below

Figure 1: Behaviour of the ODE is determined by eigenvalues.

- We can assign a time constant based on the eigenvalues
 - Purely real eigenvalue: $\tau_i = \frac{1}{|\lambda_i|}$

* In this case τ describes the rate of decay of the system – Purely imaginary: $\tau_i = \frac{2\pi}{|\lambda_i|}$

- * In this case τ is the period of the oscillation; faster oscillations means smaller τ For a complex eigenvalue, we will consider both: $\tau_i = \left\{ \frac{1}{\operatorname{Re}\left\{\lambda_i\right\}}, \frac{2\pi}{\operatorname{Im}\left\{\lambda_i\right\}} \right\}$
- We define the *stiffness* of the system as $\gamma = \frac{\tau_{max}}{\tau_{min}}$ as the ratio between the maximum and minimum time constants; the ODE is considered stiff when $\tau > 10^3$
 - We only care about the max and min time constants since if we can compute the fastest and slowest behaviours of our system, we can compute anything in-between
- General rule of thumb:
 - Take the simulation time to be $T = 5\tau_{max}$ if the system is stable

- * If the system is unstable, stop when a component of x exceeds a threshold Take the step size to be $h = \min\left\{\frac{\tau_{min}}{10}, \frac{T}{200}\right\}$
- * This gives the number of steps as $k = \frac{T}{h} = \max\{50\gamma, 200\}$ For plotting, take the step size to be $H = \frac{T}{200} = \frac{\tau_{max}}{40}$, since we do not need to plot every step For stiff ODEs, fixed-step solvers are generally very expensive, so variable step-size solvers with an initial step size of $\frac{\tau_{min}}{10}$ should be used * In MATLAB, solvers ending with "s" are good for stiff systems, e.g. ode23s, ode15s