
Lecture 7, Sep 29, 2023
Numerical ODE Solving Continued

• Recall that we were able to convert a continuous system to a discrete system exactly for a linear system
with a zero-order hold; however in practice our systems are nonlinear, so these numerical ODE solvers
are used

• Example: ẋ = − 1
τ

x, x(0) = x0, τ > 0

– τ = − 1
λ

is known as the time constant of the system; it is the time taken for the output to decay
to approximately 37% of the initial response

– The analytical solution is x(t) = x0e− 1
τ t

– Using forward Euler we require |1 + hλ| =
∣∣∣∣1 − h

τ

∣∣∣∣ < 1 =⇒ 0 < h < 2τ

* Smaller τ requires smaller step sizes to avoid divergence
• Example: simple harmonic oscillator ẍ + ω2x = 0, x(0) = 0, ẋ(0) = v0

– The analytical solution is x(t) = v0

ω
sin(ωt)

– Put into first-order form: ẋ =
[
x
v

]
=

[
0 1

−ω2 0

] [
x
v

]
, x(0) =

[
0
v0

]
* The eigenvalues are clearly λ = ±jω

– If we diagonalize the system using these eigenvalues we get d
dt

[
y1
y2

]
=

[
λ1 0
0 λ2

] [
y1
y2

]
which gives

us a new decoupled system whose eigenvalues are the same as the original system
– Each equation’s stability can now be checked independently
– |1 + hλi| < 1 =⇒ |1 ± jωh| < 1 but |1 + jωh| =

√
1 + (hω)2 ≥ 1, so regardless of ω or h forward

Euler is unstable
• We can generalize the consistency of time-stepping methods such as forward and backward Euler

– All time-stepping methods are in some way trying to approximate the average slope s(xk, xk+1, h)
in the interval (tk, tk+1), so xk+1 = xk + hs(xk, xk+1, h)

– Therefore for consistency we require lim
h→0

s(xk, xk+1, h) = ẋ(tk) = f(x(tk))
– For example with forward Euler lim

h→0
s(xk, xk+1, h) = lim

h→0
fk = fk

• Instead of using derivative approximations, what if we try to approximate the integral instead?

– xk+1 = xk +
� tk+1

tk

ẋ(t) dt = xk +
� tk+1

tk

f(x(t)) dt

– There are many ways to approximate this derivative, each one leads to a different numerical solving
scheme

Trapezoidal Method

• This approximates the integral using the trapezoidal rule
• xk+1 = xk + h

2 (fk+1 + fk) + O(h3)
• This is an implicit method and it is second-order

• The stability condition is
∣∣∣∣1 + 1

2 hλ

1 − 1
2 hλ

∣∣∣∣ < 1

– This is unconditionally stable for λ < 0, but it requires that we can find fk+1, so it may still be
unstable if we don’t have a good way of doing so

• However, to implement this we must turn it into an explicit scheme by approximating fk+1 with order
O(h2) or higher

– e.g. we can simply use a forward Euler scheme so f(xk+1) = f(xk + hf(xk)) + O(h2)
– We need at least a second-order approximation scheme so that after multiplication by the timestep

h, we still get a third-order error, so the order of the trapezoidal method remains intact
– This leads to a family of time-stepping schemes known as the Runge-Kutta methods
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Second-Order Runge-Kutta (Heun’s Method)

• Heun’s method, also known as RK2 (second-order Runge-Kutta) is what we get when we apply the
forward Euler’s method to approximate fk+1 and then use the trapezoidal rule

• xk+1 = xk + h

2 (f(xk + hf(xk)) + fk) + O(h3)
• This is an explicit, second-order accurate method that is conditionally stable
• For ẋ = λx we have xk+1 = xk + h

2 (λ(xk + hλxk) + λxk)

=
(

1 + λh + 1
2h2λ2

)
xk

= Mxk

– Stability requires that
∣∣∣∣∆x̃k+1

∆xk

∣∣∣∣ = |M | < 1 =⇒ −4 < 2hλ + h2λ2 < 0

– Therefore stability is conditional
– The region of stability is slightly larger than that of Euler’s method but it is not a significant

improvement when it comes to stability

Fourth-Order Runge-Kutta

• RK4 uses Simpson’s rule for approximating the integral
• xk+1 = xk + h

6 (k1 + 2k2 + 2k3 + k4) where:
– k1 = f(xk)

– k2 = f

(
xk + 1

2hk1

)
– k3 = f

(
xk + 1

2hk2

)
– k4 = f(xk + hk3)

• This is an explicit, fourth-order accurate method that is conditionally stable
• We can see that the method is consistent pretty easily by showing lim

h→0

1
6(k1 + 2k2 + 2k3 + k4) = f(xk)

• Stability is cumbersome to derive but the standard approach can be used

Figure 1: Region of stability for RK4.

• The region of stability is larger but still conditional, however it now includes part of the imaginary axis,
which is very good because this allows us to simulate simple harmonic oscillators as their poles lie on
the imaginary axis

– This applies for both SHOs with no damping and very lightly damped SHOs, which is important
for structural analysis applications
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Multi-Step Methods

• These methods try to interpolate f(x(t)) = ẋ(t) over multiple intervals
– Information about previous values of f(t) can be used to fit a polynomial, which is used to

extrapolate the behaviour
– This is then fed back to the integration rule

• e.g. we can use a second-order polynomial ξ(τ) = a0 + a1τ + a2τ2, −h ≤ τ ≤ h so xk+1 = ξ(h)
• Typically additional approximations on f are used to get different methods
• Example multi-step methods:

– Midpoint scheme: xk+1 = xk−1 + 2hfk

* This uses xk = ξ(0) = a0, fk = a1, xk−1 = a0 − a1h + a2h2

* This is equivalent to assuming that f is constant over the interval tk−1, tk, tk+1
• If we then integrate f then the area under the curve between these two points is 2hfk

– Adams-Bashforth scheme: xk+1 = xk−1 + h

2 (3fk − fk−1)
* This uses xk = ξ(0) = a0, fk = a1, fk−1 = a1 − 2a2h
* This corresponds to assuming that f is constant over the interval

• Multi-step methods can be more efficient since they attempt to make use of previous information
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