
Lecture 6, Sep 27, 2023
Numerical ODE Solving

• We will consider a linear ODE ẋ(t) = f(t) = λx(t), x(0) = x0 as our test problem
• We want the test problem to be well-conditioned so we can separate the error resulting from the

algorithm from the error resulting from the input/problem
– This allows us to analyze the algorithm, not the problem itself

• The exact solution to our test problem is x(t) = x0eλt so with error if we simulate until time T ,
x(T) = (x0 + ∆x0)eλT =⇒ ∆x̄ = ∆x0eλT

– The absolute conditioning number is
∣∣∣∣ ∆x̄

∆x0

∣∣∣∣ = eλT

– For λ < 0 this will shrink, so our problem is well-conditioned for λ < 0
• For any ODE solver, we can analyze two types of error: the local truncation error (error per iteration)

or the global truncation error (error accumulated over time)
– The global truncation error is typically an order lower than the local truncation error
– When we say an algorithm is of a certain order, we refer to the global truncation error

• Note that all error discussion assumes numerical stability; if the algorithm is unstable the algorithm
will diverge

Forward Euler’s Method

• Approximate the derivative as ẋk = fk = xk+1 − xk

h
+ O(h) =⇒ xk+1 = xk + hfk

• This is an explicit method because xk+1 depends on past values xk, fk

• Local truncation error: let x̂ be the exact solution, then for each step:

– x̂(tk+1) = x(tk) + hẋ(tk) + h2

2 ẍ(tk) + O(h3)

= xk + hfk + O(h2)
= xk+1 + O(h2)

– This makes the local truncation error second-order
• Global truncation error:

– To get the state at Tsim we have to go through Tsim

h
= O

(
1
h

)
times

– This gives a global truncation error of O

(
1
h

)
O(h2) = O(h)

– Therefore forward Euler is a first-order method

Figure 1: Stability condition for forward Euler’s method.

• Stability:
– Consider the linear test equation: x̂k+1 = xk + hλxk

– With an initial error of ∆x0: x̂1 = (x0 + ∆x0) + hλ(x0 + ∆x0)
= (1 + hλ)x0︸ ︷︷ ︸

x1+x̃1

+ (1 + hλ)∆x0︸ ︷︷ ︸
∆x̃1

1

– ∆x̃1 = (1 + hλ)∆x0 =⇒
∣∣∣∣∆x̃k+1

∆xk

∣∣∣∣ = |1 + hλ| < 1 for stability

– This makes forward Euler conditionally stable (even when the problem is well-conditioned, we still
need additional conditions for stability)

– With a larger λ the function is changing faster, so it makes sense that we require a smaller timestep
• If we have a stiff system (i.e. ratio of fastest to slowest eigenvalue is large), we need to make h small to

accommodate the fast mode which wastes resources on the slow mode

Backward Euler’s Method

• The backward Euler’s method instead uses xk+1 = xk + hfk+1
– The derivative at the next timestep is used instead

• This is an implicit time-stepping scheme because xk+1 no longer depends only on past variables
• To actually implement this we have a number of options, including inverting f , using a numerical root

finding algorithm, or making further approximations
– For some cases, including the test equation, it is still straightforward to solve for xk+1

– For the test equation xk+1 = xk + hλxk+1 =⇒ xk+1 = xk

1 − hλ
• The stability conditions are |1 − hλ| > 1, so this time we’re stable everywhere except a circle around 1

– Since the system is always stable for Re λ < 0, it is unconditionally stable
• Backward Euler can be harder to implement but has much better stability; this gives us more freedom

to choose h, which helps with stiff systems in particular (where forward Euler struggles)

2

	Lecture 6, Sep 27, 2023
	Numerical ODE Solving
	Forward Euler’s Method
	Backward Euler’s Method

