Lecture 6, Sep 27, 2023

Numerical ODE Solving

- We will consider a linear ODE $\dot{x}(t) = f(t) = \lambda x(t), x(0) = x_0$ as our test problem
- We want the test problem to be well-conditioned so we can separate the error resulting from the algorithm from the error resulting from the input/problem
 - This allows us to analyze the algorithm, not the problem itself
- The exact solution to our test problem is $x(t) = x_0 e^{\lambda t}$ so with error if we simulate until time T, $x(T) = (x_0 + \Delta x_0)e^{\lambda T} \implies \Delta \bar{x} = \Delta x_0 e^{\lambda T}$
 - The absolute conditioning number is $\left|\frac{\Delta \bar{x}}{\Delta x_0}\right| = e^{\lambda T}$
 - For $\lambda < 0$ this will shrink, so our problem is well-conditioned for $\lambda < 0$
- For any ODE solver, we can analyze two types of error: the *local truncation error* (error per iteration) or the *global truncation error* (error accumulated over time)
 - The global truncation error is typically an order lower than the local truncation error
 - When we say an algorithm is of a certain order, we refer to the global truncation error
- Note that all error discussion assumes numerical stability; if the algorithm is unstable the algorithm will diverge

Forward Euler's Method

- Approximate the derivative as $\dot{x}_k = f_k = \frac{x_{k+1} x_k}{h} + O(h) \Longrightarrow x_{k+1} = x_k + hf_k$
- This is an *explicit* method because x_{k+1} depends on past values x_k, f_k
- Local truncation error: let \hat{x} be the exact solution, then for each step:

$$- \hat{x}(t_{k+1}) = x(t_k) + h\dot{x}(t_k) + \frac{h^2}{2}\ddot{x}(t_k) + O(h^3)$$
$$= x_k + hf_k + O(h^2)$$
$$= x_{k+1} + O(h^2)$$

- This makes the local truncation error second-order

- Global truncation error:
 - To get the state at T_{sim} we have to go through $\frac{T_{sim}}{h} = O\left(\frac{1}{h}\right)$ times
 - This gives a global truncation error of $O\left(\frac{1}{h}\right)O(h^2) = O(h)$
 - Therefore forward Euler is a first-order method

Figure 1: Stability condition for forward Euler's method.

- Stability:
 - Consider the linear test equation: $\hat{x}_{k+1} = x_k + h\lambda x_k$
 - With an initial error of Δx_0 : $\hat{x}_1 = (x_0 + \Delta x_0) + h\lambda(x_0 + \Delta x_0)$

$$= \underbrace{(1+h\lambda)x_0}_{x_1+\tilde{x}_1} + \underbrace{(1+h\lambda)\Delta x_0}_{\Delta \tilde{x}_1}$$

- $-\Delta \tilde{x}_1 = (1+h\lambda)\Delta x_0 \implies \left|\frac{\Delta \tilde{x}_{k+1}}{\Delta x_k}\right| = |1+h\lambda| < 1 \text{ for stability}$
- This makes forward Euler conditionally stable (even when the problem is well-conditioned, we still need additional conditions for stability)
- With a larger λ the function is changing faster, so it makes sense that we require a smaller timestep
- If we have a *stiff* system (i.e. ratio of fastest to slowest eigenvalue is large), we need to make h small to accommodate the fast mode which wastes resources on the slow mode

Backward Euler's Method

- The backward Euler's method instead uses $x_{k+1} = x_k + hf_{k+1}$ - The derivative at the next timestep is used instead
- This is an *implicit* time-stepping scheme because x_{k+1} no longer depends only on past variables
- To actually implement this we have a number of options, including inverting f, using a numerical root finding algorithm, or making further approximations
 - For some cases, including the test equation, it is still straightforward to solve for x_{k+1} For the test equation $x_{k+1} = x_k + h\lambda x_{k+1} \implies x_{k+1} = \frac{x_k}{1 h\lambda}$
- The stability conditions are $|1 h\lambda| > 1$, so this time we're stable everywhere except a circle around 1 - Since the system is always stable for $\operatorname{Re} \lambda < 0$, it is unconditionally stable
- Backward Euler can be harder to implement but has much better stability; this gives us more freedom to choose h, which helps with stiff systems in particular (where forward Euler struggles)