Lecture 6, Sep 27, 2023

Numerical ODE Solving

We will consider a linear ODE (t) = f(t) = \x(¢), z(0) = x¢ as our test problem
We want the test problem to be well-conditioned so we can separate the error resulting from the
algorithm from the error resulting from the input/problem

— This allows us to analyze the algorithm, not the problem itself
The exact solution to our test problem is z(t) = xge so with error if we simulate until time T,
z(T) = (zo + Azg)e’T = AZ = Azpe?T

AT

— The absolute conditioning number is

Zo
— For A < 0 this will shrink, so our problem is well-conditioned for A < 0
For any ODE solver, we can analyze two types of error: the local truncation error (error per iteration)
or the global truncation error (error accumulated over time)
— The global truncation error is typically an order lower than the local truncation error
— When we say an algorithm is of a certain order, we refer to the global truncation error
Note that all error discussion assumes numerical stability; if the algorithm is unstable the algorithm
will diverge

Forward Euler’s Method

Approximate the derivative as &, = fi = w +O0(h) = zp41 =k + hf

This is an explicit method because z+1 depends on past values xy, fi
Local truncation error: let & be the exact solution, then for each step:

— j(tk+1) = Qj(tk) + h:C(tk) + %QI(tk) + O(hg)
=25 + hfy + O(h?)

= g1 + O(h?)
— This makes the local truncation error second-order
Global truncation error:

Ty 1
— To get the state at Ty;,, we have to go through % =0 (h) times

1
— This gives a global truncation error of O (h> O(h?) = O(h)

— Therefore forward Euler is a first-order method

Im{h\
unstable mihA}
/’—_\\1__
/ stable "\
/ b Re{hA}

Figure 1: Stability condition for forward Euler’s method.

Stability:
— Consider the linear test equation: 11 =) + hAxy
— With an initial error of Axg: &1 = (g + Azg) + hA(x0 + Axg)

= (1+hNzo+ (1 4+ hA) Az

x1+T1 AFq

ATy
A:L'k
— This makes forward Euler conditionally stable (even when the problem is well-conditioned, we still
need additional conditions for stability)
— With a larger A the function is changing faster, so it makes sense that we require a smaller timestep
o If we have a stiff system (i.e. ratio of fastest to slowest eigenvalue is large), we need to make h small to
accommodate the fast mode which wastes resources on the slow mode

— AZy = (1+ BN Az =

’ = |1+ hA| < 1 for stability

Backward Euler’s Method

e The backward Euler’s method instead uses zpy+1 = xp + hfrt1
— The derivative at the next timestep is used instead
e This is an implicit time-stepping scheme because xx11 no longer depends only on past variables
e To actually implement this we have a number of options, including inverting f, using a numerical root
finding algorithm, or making further approximations

— For some cases, including the test equation, it is still straightforward to solve for xy 1
T,

1—hA
o The stability conditions are |1 — hA| > 1, so this time we’re stable everywhere except a circle around 1
— Since the system is always stable for Re A < 0, it is unconditionally stable
e Backward Euler can be harder to implement but has much better stability; this gives us more freedom
to choose h, which helps with stiff systems in particular (where forward Euler struggles)

— For the test equation zy 11 =z + hAzg41 = Tg41 =

	Lecture 6, Sep 27, 2023
	Numerical ODE Solving
	Forward Euler’s Method
	Backward Euler’s Method

