
Lecture 5, Sep 22, 2023
Numerical Integration and Differentiation

• Note, numerical integration can refer to two things: computing an integral or solving an ODE
– Solving an integral is an open-loop process, since the derivative of the function does not depend

on its current value
– Integrating an ODE requires a feedback process, since the derivative is dependent on the current

state
* The existence of feedback means numerical stability must be studied – otherwise errors can

accumulate and lead to divergence
– We will start with the former

Numerical Integration

• Numerical integration is sometimes referred to as quadrature or cubature in higher dimensions

• We want to approximate
� b

a

f(x) dx with a finite number of evaluations of f

– There is often a tradeoff between accuracy and speed

Figure 1: Illustration of 3 common numerical integration rules.

• Common numerical integration rules include:

– Midpoint rule (1 point of evaluation):
� xi+1

xi

f(x) dx ≈ (xi+1 − xi) · f

(
xi+1 + xi

2

)
* The function is approximated as constant between the two bounds
* O(∆2)

– Trapezoidal rule (2 points of evaluation):
� xi+1

xi

f(x) dx ≈ (xi+1 − xi) · f(xi+1) + f(xi)
2

* The function is approximated as linear between the two points
* O(∆2)

– Simpson’s rule (3 points of evaluation):
� xi+1

xi

f(x) dx ≈ (xi+1−xi)·
f(xi+1) + 4f

(
xi+1+xi

2

)
+ f(xi)

6
* The function is approximated as quadratic between the two points
* O(∆4)

• The accuracy of integration depends on:
– The step size ∆i = xi+1 − xi – smaller step sizes are more accurate but take more time
– The type of approximation rule used (midpoint, trapezoidal, Simpson’s, etc)
– The evolution of f(x) (i.e. the nature of the function) – functions that are rougher are inherently

harder to integrate
• Techniques exist to adapt the step size dynamically based on where the function is changing the fastest

1



Numerical Differentiation

• Derivatives can be approximated by a finite difference:
– Forward difference: f ′(x) ≈ f(x + ∆) − f(∆)

∆
* O(∆)

– Backward difference: f ′(x) ≈ f(x) − f(x − ∆)
∆

* O(∆)

– Centered difference: f ′(x) ≈ f(x + ∆) − f(x − ∆)
2∆

* O(∆2)
• Choosing ∆ involves a tradeoff between the approximation accuracy and resilience to numerical errors

and noise
– Choosing ∆ makes the algorithm prone to noise and numerical issues because f(x) ≈ f(x + ∆) as

∆ → 0
• Example: order of accuracy for the central difference

– f̃ ′(t) = f(x + ∆) − f(x − ∆)
2∆

– We wish to find ∆y = f̃ ′(x) − f ′(x) and its relationship to ∆

– f̃ ′(x) =

(f(x) + ∆f ′(x) + 1
2 ∆2f ′′(x) + 1

6 ∆3f ′′′(x) + O(∆4))
− (f(x) − ∆f ′(x) + 1

2 ∆2f ′′(x) − 1
6 ∆3f ′′′(x) + O(∆4))

2∆
= f ′(x) + 1

6∆2 + O(∆3)

– ∆y = f̃ ′(t) − f ′(t) = 1
6∆2 + O(∆3)

– Therefore ∆y is of order ∆2

Numerical ODE Solving

• Even for asymptotically stable and well-conditioned ODEs, if we choose the wrong solver or step size,
the solution can diverge

• If the function that defines the derivative is continuous and Lipschitz, then the ODE has exactly one
solution for all t ≥ 0, for each initial condition

• If we have a time-varying ODE ẋ(t) = f(x(t), t), we can convert this into a time-invariant ODE using

an augmented state, x′(t) =
[
x(t)
g(t)

]
where g(t) = t, so then we have d

dt

[
x(t)
g(t)

]
=

[
f(x(t), g(t))

1

]
– This allows us to change any time-varying ODE into a time-invariant ODE, but it will become

nonlinear

2


	Lecture 5, Sep 22, 2023
	Numerical Integration and Differentiation
	Numerical Integration
	Numerical Differentiation
	Numerical ODE Solving



