Lecture 5, Sep 22, 2023

Numerical Integration and Differentiation

e Note, numerical integration can refer to two things: computing an integral or solving an ODE

— Solving an integral is an open-loop process, since the derivative of the function does not depend
on its current value

— Integrating an ODE requires a feedback process, since the derivative is dependent on the current
state

* The existence of feedback means numerical stability must be studied — otherwise errors can
accumulate and lead to divergence
— We will start with the former

Numerical Integration

o Numerical integration is sometimes referred to as quadrature or cubature in higher dimensions
b

o We want to approximate f(z) dz with a finite number of evaluations of f

a
— There is often a tradeoff between accuracy and speed
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Figure 1: Illustration of 3 common numerical integration rules.

e Common numerical integration rules include:
Ti+1

— Midpoint rule (1 point of evaluation): / flz)de = (xip1 —x3) - f (W)

Zq

* The function is approximated as constant between the two bounds

* O(A2)
Ti41 . :
— Trapezoidal rule (2 points of evaluation): / fz)de ~ (241 — 24) - w
Zj
* The function is approximated as linear between the two points
* O(A?)
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— Simpson’s rule (3 points of evaluation): / flz)dz ~ (zip1—2x4)- 5

* The function is approximated as qualdratic between the two points
* 0(AY)
e The accuracy of integration depends on:
— The step size A; = z;11 — x; — smaller step sizes are more accurate but take more time
— The type of approximation rule used (midpoint, trapezoidal, Simpson’s, etc)
— The evolution of f(x) (i.e. the nature of the function) — functions that are rougher are inherently
harder to integrate
e Techniques exist to adapt the step size dynamically based on where the function is changing the fastest



Numerical Differentiation

e Derivatives can be approximated by a finite difference:

flz+A) - f(A)

— Forward difference: f'(x) ~

A
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— Backward difference: f'(x) ~ %
* 08
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— Centered difference: f'(x) ~ fla+ )2Af(96 )
* o(a%)
e Choosing A involves a tradeoff between the approximation accuracy and resilience to numerical errors
and noise
— Choosing A makes the algorithm prone to noise and numerical issues because f(x) = f(z + A) as
A—0

e Example: order of accuracy for the central difference
oy S+ A) - flz—A)
— We wish to find Ay = f'(x) — f'(z) and its relationship to A
(f(@) + Af'(2) + 3 A2 f"(2) + A " (2) + O(AY))
— (f(@) = Af'(z) + 3A%f"(z) — A3 " (2) + O(AY))
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= f'(z) + EAQ +0(A%)
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- Ay =F10) - F() = S+ 0(aY)
— Therefore Ay is of order A?

Numerical ODE Solving

e Even for asymptotically stable and well-conditioned ODEs, if we choose the wrong solver or step size,
the solution can diverge

o If the function that defines the derivative is continuous and Lipschitz, then the ODE has exactly one
solution for all ¢ > 0, for each initial condition

o If we have a time-varying ODE &(t) = f(«(t),t), we can convert this into a time-invariant ODE using
an augmented state, x'(t) = [Z((:))} where g(t) = t, so then we have % [:;((:ﬂ - {f(m(t)l,g(t))}

— This allows us to change any time-varying ODE into a time-invariant ODE, but it will become
nonlinear
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