Lecture 4, Sep 20, 2023

Numerical Root Finding

» Root finding involves finding =* given f such that f(z*) =0

— One application is optimization problems where we find the roots of the derivative
e Regularizing assumptions are used to make the problem well-posed; some common assumptions are, in

increasing order of restrictiveness:
— Continuity: f is continuous if f(z) — f(z) as x — z for all z
— Lipschitz continuity: f is Lipschitz continuous if there exists a constant ¢ such that | f(z) — f(z)| <
clx — z| for all x,z € R
* This 1is like saying that the derivative is bounded

* e.g. — is not Lipschitz continuous
x

— Differentiability: f is differentiable if f'(x) exists for all z; f € C™ if m derivatives exist and are
continuous; f € C* if all derivatives exist and are continuous
e Generally, the more assumptions we can make, the faster our algorithm becomes

The convergence rate of an algorithm is the rate at which the error decreases; formally, the convergence
rate (aka order) of an algorithm is r if

| B
1 ==
dm g ¢

where C' is a constant.

e The first algorithm we will look at is bisection, which relies on the intermediate value theorem; if we
have a continuous f and two points, where f is positive at one test point and negative at the other, we
know there must be a root between the test points

— The algorithm:
1. Initialization: start with bracketing guesses Iy, ro such that f(lo)f(ro) < 0 (that is, sgn f(lp) #

sgn f(ro))
* These points are typically picked based on some prior knowledge of the function
l
2. Iterative update: bisect the current interval by computing ¢ = %

*If f(e) - f(lg) <0, then rp41 = ¢, lp41 = i

*If f(e) - f(rg) <0, then rgy1 = 7k, liy1 = ¢

* In other words, change the bound that has the same sign as ¢ to be ¢
3. Tterate until |, — lx| < € and return ¢

1
— For bisection Ey = |ry — li|, which is decreased by a factor of 3 for each iteration, therefore

|i§“ = % and so bisection has linear convergence (order 1)
—In sflmmary, bisection is easy to implement and guaranteed to converge on any continuous f, but
finding the initial bracket lg, ¢ can be challenging
e With more assumptions, we can use fixed-point iteration
— Assume that there exists some update algorithm g such that g(z*) = z*, so f(z*) = g(z*) —2* = 0;
this update function will bring us closer to the root if it converges
* This update is problem-dependent, but has to be Lipschitz continuous for convergence
* Example: for f(x) = e3" — 3 —2
o gi(z) = e —2

1
¢ e =gp42 = §x=ln($—|—2) = —z+2In(z+2)=0
. 92($):21H($+2)

— The algorithm:
1. Start with an initial guess xq
2. Update xg+1 = g(xg)
3. Iterate until |xg41 — zk| < €, then return gy
— This is called a “fixed-point” algorithm because if xp = z* then all xg,, = ="
— Epy1 = o401 — 27
= lg(zr) — g(z7)| < clzy — 27|
= CEk
= CkEO
* Convergence requires that ¢ < 1 when z is close to z* (i.e. g is not too steep near the root),
otherwise it diverges
* Convergence is linear but can be quadratic if ¢'(z) ~ 0 (e.g. Newton’s method)
— In summary, fixed-point iteration requires choosing a problem-dependent g(x), which must be
Lipschitz continuous with ¢ < 1 close to z*
Newton’s method is a form of fixed-point iteration which assumes f € C* (continuously differentiable
up to the first derivative), which has quadratic convergence
— We can do a Taylor expansion around zy, to get f(z) =~ f(zx) + f'(zx)(x — x1), then f(z) =0 =

f(xx)
f@n) + o) =) =0 = o=z - £
— Therefore Newton’s method is equivalent to a fixed-point iteration with g(z) = = — 7 /((x)) (i.e. the
x
: f(zn)
date step is =5 —
update step is zp11 = Tk f’(ﬂﬁk))

— Newton’s method is exact for a linear function; the more linear a function is, the faster the
convergence; if the function is highly nonlinear, Newton’s method converges slowly or not at all

1
Assuming f is differentiable, then we can show FExi1 = |¢'(2*)Ey + §g"(:z:*)E,% + O(E})

z)f"(x
* For Newton updates, ¢'(z) = f(f/)(fx)g)
* Assuming x* is a single root, then f’(x) # 0 close to 2* and so ¢'(x) ~ 0 when close to z*;
this means the ¢'(z*) term disappears and the convergence rate becomes quadratic
— In summary, Newton’s method assumes continuous differentiability, in return for quadratic conver-
gence for single roots with f/(z*) # 0; however it requires computing the derivative at each step
which could be expensive
If we don’t know the actual derivative, we can use the secant method
fak) — fla-1)
Tk — Tk—1
* f(xg—1) can be recycled from the previous iteration to minimize cost
— Convergence rate is difficult to analyze, but it is between linear and quadratic
Hybrid methods that combine one or more methods also exist
Note the overall speed of a root finding algorithm depends both on the rate of convergence and the cost
per iteration; they must be balanced to achieve a fast algorithm
— The difference between linear and quadratic convergence can be huge in robotics applications, but
rate of convergence is not everything

— Instead of the derivative we use * f’(z;) ~

	Lecture 4, Sep 20, 2023
	Numerical Root Finding

