Lecture 4, Sep 20, 2023

Numerical Root Finding

- Root finding involves finding x^* given f such that $f(x^*) = 0$
 - One application is optimization problems where we find the roots of the derivative
- Regularizing assumptions are used to make the problem well-posed: some common assumptions are, in increasing order of restrictiveness:
 - Continuity: f is continuous if $f(x) \to f(z)$ as $x \to z$ for all z
 - Lipschitz continuity: f is Lipschitz continuous if there exists a constant c such that $|f(x) f(z)| \le c$ c|x-z| for all $x,z\in\mathbb{R}$
 - * This is like saying that the derivative is bounded
 - * e.g. $\frac{1}{r}$ is not Lipschitz continuous
 - Differentiability: f is differentiable if f'(x) exists for all x; $f \in C^m$ if m derivatives exist and are continuous; $f \in C^{\infty}$ if all derivatives exist and are continuous
- Generally, the more assumptions we can make, the faster our algorithm becomes

Definition

The *convergence rate* of an algorithm is the rate at which the error decreases; formally, the convergence rate (aka order) of an algorithm is r if

$$\lim_{k \to \infty} \frac{|E_{k+1}|}{|E_k|^r} = C$$

where C is a constant.

• The first algorithm we will look at is *bisection*, which relies on the intermediate value theorem; if we have a continuous f and two points, where f is positive at one test point and negative at the other, we know there must be a root between the test points

– The algorithm:

1. Initialization: start with bracketing guesses l_0, r_0 such that $f(l_0)f(r_0) < 0$ (that is, sgn $f(l_0) \neq 0$ $\operatorname{sgn} f(r_0)$

* These points are typically picked based on some prior knowledge of the function

- 2. Iterative update: bisect the current interval by computing $c = \frac{l_k + r_k}{2}$
 - * If $f(c) \cdot f(l_k) < 0$, then $r_{k+1} = c, l_{k+1} = l_k$
 - * If $f(c) \cdot f(r_k) < 0$, then $r_{k+1} = r_k, l_{k+1} = c$
 - * In other words, change the bound that has the same sign as c to be c
- 3. Iterate until $|r_k l_k| < \epsilon$ and return c
- For bisection $E_k = |r_k l_k|$, which is decreased by a factor of $\frac{1}{2}$ for each iteration, therefore
 - $\frac{|E_{k+1}|}{|E_k|} = \frac{1}{2}$ and so bisection has linear convergence (order 1)
- In summary, bisection is easy to implement and guaranteed to converge on any continuous f, but finding the initial bracket l_0, r_0 can be challenging
- With more assumptions, we can use fixed-point iteration
 - Assume that there exists some update algorithm g such that $q(x^*) = x^*$, so $f(x^*) = q(x^*) x^* = 0$; this update function will bring us closer to the root if it converges
 - * This update is problem-dependent, but has to be Lipschitz continuous for convergence
 - * Example: for $f(x) = e^{\frac{1}{2}x} x 2$
 - $g_1(x) = e^{\frac{1}{2}x} 2$
 - $e^{\frac{1}{2}x} = x + 2 \implies \frac{1}{2}x = \ln(x+2) \implies -x + 2\ln(x+2) = 0$ $g_2(x) = 2\ln(x+2)$

- The algorithm:

- 1. Start with an initial guess x_0
- 2. Update $x_{k+1} = g(x_k)$
- 3. Iterate until $|x_{k+1} x_k| < \epsilon$, then return x_{k+1}
- This is called a "fixed-point" algorithm because if $x_k = x^*$ then all $x_{k+n} = x^*$
- $E_{k+1} = |x_{k+1} x^*|$ = $|g(x_k) - g(x^*)| \le c|x_k - x^*|$
 - $= cE_k$
 - $= c^k E_0$
 - * Convergence requires that c < 1 when x is close to x^* (i.e. g is not too steep near the root), otherwise it diverges
 - * Convergence is linear but can be quadratic if $g'(x) \approx 0$ (e.g. Newton's method)
- In summary, fixed-point iteration requires choosing a problem-dependent g(x), which must be Lipschitz continuous with c < 1 close to x^*
- Newton's method is a form of fixed-point iteration which assumes $f \in C^1$ (continuously differentiable up to the first derivative), which has quadratic convergence
 - We can do a Taylor expansion around x_k to get $f(x) \approx f(x_k) + f'(x_k)(x x_k)$, then $f(x) = 0 \implies f(x_k) + f'(x_k)(x x_k) = 0 \implies x = x_k \frac{f(x_k)}{f'(x_k)}$
 - Therefore Newton's method is equivalent to a fixed-point iteration with $g(x) = x \frac{f(x)}{f'(x)}$ (i.e. the $f(x_k)$)

update step is $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$

- Newton's method is exact for a linear function; the more linear a function is, the faster the convergence; if the function is highly nonlinear, Newton's method converges slowly or not at all
- Assuming f is differentiable, then we can show $E_{k+1} = \left| g'(x^*)E_k + \frac{1}{2}g''(x^*)E_k^2 \right| + O(E_k^3)$
 - * For Newton updates, $g'(x) = \frac{f(x)f''(x)}{f'(x)^2}$
 - * Assuming x^* is a single root, then $f'(x) \neq 0$ close to x^* and so $g'(x) \approx 0$ when close to x^* ; this means the $g'(x^*)$ term disappears and the convergence rate becomes quadratic
- In summary, Newton's method assumes continuous differentiability, in return for quadratic convergence for single roots with $f'(x^*) \neq 0$; however it requires computing the derivative at each step which could be expensive
- If we don't know the actual derivative, we can use the secant method
 - Instead of the derivative we use * $f'(x_k) \approx \frac{f(x_k) f(x_{k-1})}{x_k x_{k-1}}$
 - * $f(x_{k-1})$ can be recycled from the previous iteration to minimize cost
 - Convergence rate is difficult to analyze, but it is between linear and quadratic
- Hybrid methods that combine one or more methods also exist
- Note the overall speed of a root finding algorithm depends both on the rate of convergence and the cost per iteration; they must be balanced to achieve a fast algorithm
 - The difference between linear and quadratic convergence can be huge in robotics applications, but rate of convergence is not everything