
Lecture 4, Sep 20, 2023
Numerical Root Finding

• Root finding involves finding x∗ given f such that f(x∗) = 0
– One application is optimization problems where we find the roots of the derivative

• Regularizing assumptions are used to make the problem well-posed; some common assumptions are, in
increasing order of restrictiveness:

– Continuity: f is continuous if f(x) → f(z) as x → z for all z
– Lipschitz continuity: f is Lipschitz continuous if there exists a constant c such that |f(x) − f(z)| ≤

c|x − z| for all x, z ∈ R
* This is like saying that the derivative is bounded
* e.g. 1

x
is not Lipschitz continuous

– Differentiability: f is differentiable if f ′(x) exists for all x; f ∈ Cm if m derivatives exist and are
continuous; f ∈ C∞ if all derivatives exist and are continuous

• Generally, the more assumptions we can make, the faster our algorithm becomes

Definition

The convergence rate of an algorithm is the rate at which the error decreases; formally, the convergence
rate (aka order) of an algorithm is r if

lim
k→∞

|Ek+1|
|Ek|r

= C

where C is a constant.

• The first algorithm we will look at is bisection, which relies on the intermediate value theorem; if we
have a continuous f and two points, where f is positive at one test point and negative at the other, we
know there must be a root between the test points

– The algorithm:
1. Initialization: start with bracketing guesses l0, r0 such that f(l0)f(r0) < 0 (that is, sgn f(l0) ̸=

sgn f(r0))
* These points are typically picked based on some prior knowledge of the function

2. Iterative update: bisect the current interval by computing c = lk + rk

2
* If f(c) · f(lk) < 0, then rk+1 = c, lk+1 = lk
* If f(c) · f(rk) < 0, then rk+1 = rk, lk+1 = c
* In other words, change the bound that has the same sign as c to be c

3. Iterate until |rk − lk| < ϵ and return c

– For bisection Ek = |rk − lk|, which is decreased by a factor of 1
2 for each iteration, therefore

|Ek+1|
|Ek|

= 1
2 and so bisection has linear convergence (order 1)

– In summary, bisection is easy to implement and guaranteed to converge on any continuous f , but
finding the initial bracket l0, r0 can be challenging

• With more assumptions, we can use fixed-point iteration
– Assume that there exists some update algorithm g such that g(x∗) = x∗, so f(x∗) = g(x∗)−x∗ = 0;

this update function will bring us closer to the root if it converges
* This update is problem-dependent, but has to be Lipschitz continuous for convergence
* Example: for f(x) = e

1
2 x − x − 2

• g1(x) = e
1
2 x − 2

• e
1
2 x = x + 2 =⇒ 1

2x = ln(x + 2) =⇒ −x + 2 ln(x + 2) = 0
• g2(x) = 2 ln(x + 2)

1

– The algorithm:
1. Start with an initial guess x0
2. Update xk+1 = g(xk)
3. Iterate until |xk+1 − xk| < ϵ, then return xk+1

– This is called a “fixed-point” algorithm because if xk = x∗ then all xk+n = x∗

– Ek+1 = |xk+1 − x∗|
= |g(xk) − g(x∗)| ≤ c|xk − x∗|
= cEk

= ckE0
* Convergence requires that c < 1 when x is close to x∗ (i.e. g is not too steep near the root),

otherwise it diverges
* Convergence is linear but can be quadratic if g′(x) ≈ 0 (e.g. Newton’s method)

– In summary, fixed-point iteration requires choosing a problem-dependent g(x), which must be
Lipschitz continuous with c < 1 close to x∗

• Newton’s method is a form of fixed-point iteration which assumes f ∈ C1 (continuously differentiable
up to the first derivative), which has quadratic convergence

– We can do a Taylor expansion around xk to get f(x) ≈ f(xk) + f ′(xk)(x − xk), then f(x) = 0 =⇒

f(xk) + f ′(xk)(x − xk) = 0 =⇒ x = xk − f(xk)
f ′(xk)

– Therefore Newton’s method is equivalent to a fixed-point iteration with g(x) = x − f(x)
f ′(x) (i.e. the

update step is xk+1 = xk − f(xk)
f ′(xk))

– Newton’s method is exact for a linear function; the more linear a function is, the faster the
convergence; if the function is highly nonlinear, Newton’s method converges slowly or not at all

– Assuming f is differentiable, then we can show Ek+1 =
∣∣∣∣g′(x∗)Ek + 1

2g′′(x∗)E2
k

∣∣∣∣ + O(E3
k)

* For Newton updates, g′(x) = f(x)f ′′(x)
f ′(x)2

* Assuming x∗ is a single root, then f ′(x) ̸= 0 close to x∗ and so g′(x) ≈ 0 when close to x∗;
this means the g′(x∗) term disappears and the convergence rate becomes quadratic

– In summary, Newton’s method assumes continuous differentiability, in return for quadratic conver-
gence for single roots with f ′(x∗) ̸= 0; however it requires computing the derivative at each step
which could be expensive

• If we don’t know the actual derivative, we can use the secant method
– Instead of the derivative we use * f ′(xk) ≈ f(xk) − f(xk−1)

xk − xk−1
* f(xk−1) can be recycled from the previous iteration to minimize cost

– Convergence rate is difficult to analyze, but it is between linear and quadratic
• Hybrid methods that combine one or more methods also exist
• Note the overall speed of a root finding algorithm depends both on the rate of convergence and the cost

per iteration; they must be balanced to achieve a fast algorithm
– The difference between linear and quadratic convergence can be huge in robotics applications, but

rate of convergence is not everything

2

	Lecture 4, Sep 20, 2023
	Numerical Root Finding

