Lecture 3, Sep 15, 2023

Numerical Methods and Stability

input K output
—| algorithm
T=x+Ax

- J=y+ Ay
T T f=r+Af

true value
approximation

Figure 1: Model of errors in a numerical algorithm.

e Any numerical system will accumulate errors in a variety of ways; how can we quantify and evaluate
these errors?
e Some common sources of error are:
— Rounding/truncation errors, due to finite precision
— Approximate numerical algorithms, in which we simplify complex models for efficiency
— Input error, where the inputs to our algorithm are the outputs of an upstream algorithm which
itself has errors
— Modelling errors, where the model itself is a simplified representation of the real world (e.g. dis-
cretization)
o These errors can be categorized into two general sources: input error (Az) and algorithm /approximation
error (Af) which combine to result in an output error (Ay)
o Absolute errors are simply the absolute value of the error, |Ax|; relative errors are the absolute errors

|Ax]

divided by the parameter, 6 ——

x
— If the true values of z, f,y are not known, we cannot compute the relative error and might have to
settle for an upper bound instead

Well- and Ill-Conditioned Problems

e First we will consider what happens when we have an ideal algorithm with some input error
o Intuitively, a problem is well-conditioned if, assuming an ideal algorithm (A f = 0), the input error does
not grow when propagated through the algorithm, i.e. Ay < Az
d
— Consider the Taylor expansion: f(x 4+ Az) = f(x) + d—fAcE +0(Az?) =y + Ay
x
Ay 1 df Az 9 df = Az 9 9
- —= == — . x— +0O(A =—=—— —+0(Az") = K0z + O(A
(@ G et 0] = S ST 0(Ar) = Kabr 4 0(As?)
— If |6z| < e then |dy| ~ | K 0x| < |K.|e, so given a bound on éx we can find a bound on dy

The absolute condition number is defined as

Ad
Cond, = —y"\‘ df

Az| |dz
The relative condition number is defined as
oy df =
d, = |= |~ |K,|=|— —
cond, = 2| 1K1 = | 75

(note, multiplication not differentiation)
A problem is well-conditioned:
1. If and only if Cond,, is small (using absolute error)
2. If and only if cond, < 1 (using relative error)

o We typically want the absolute condition number to be small (but how small depends on the problem),
and we want the relative condition number to be less than 1; so most of the time the relative condition
number is used since it is easier to interpret

o Conditioning is a property of the problem, not a particular algorithm (since we assumed a perfect
algorithm to begin with)

e Example: linear function: y = ax

df dx T
- = = —t K = — =Q0q0— = 1
dr Tdf Yoz
— The condition number is 1, so the relative error stays the same and the problem is well-conditioned
d
— The absolute error is smaller than the absolute input error if d—f =la| <1
x
* Intuitively, for a steeper function the error will get bigger, but for a smaller slope the error is
smaller
e Example: linear equation: find y such that ay + b = 0 where b is the input and a is fixed
b
Y=l =10)
df 1 _df 11 a .y
b a T f) e b
— This is another well-conditioned problem
d
- d_£ = |—| so for small a, the absolute condition number is large

o Example: differential equation: find y such that § = (A + AX)y, y(0) = yo where A is the input
C (1) = yoePMHANE = g MeAM &y Mg AN =y A
* Note we used e ~ 1+ x

A
— The absolute condition number is A_fj\ = yote
C lim Ayl JO A<0
AN Joo A>0
— This shows that asymptotically stable differential equations (DEs that approach some fixed value)

are well-conditioned
* Exercise: what we think of the error as being on the initial condition? § = Ay, y(0) = yo + Ayo

o Example: root finding: find y such that g(y) =0
— y is the output, but the input is hard to define since it is a function
— We can think of it as g(y) = 0,¢g(y + Ay) + € = 0 so ¢ is an “input” representing an additive error
in g (see diagram above); if we shift g up or down, the location of the root y will also change by
an amount

Figure 2: Representation of error in root finding.

Ayl 1

e | gl
— We find that the absolute condition number is inversely proportional to slope; notice that for the
same shift, the left root with a larger slope is shifted a lot less

— Taylor series expand: g(y) + ¢’ (y)Ay+e =9 (y)Aj+e~0 =

Order and Consistency

e We shall now consider what happens when we have an algorithmic error, while the input is ideal

Definition

Let ¢(x, A) represent some approximate algorithm that models f(z), where A are the parameters of
the algorithm; ¢’s accuracy is of order p (alternatively, ¢ is O(AP)) if

@ is consistent if
lim o(z, A) = f(z)
A0

i.e. the approximate algorithm ¢ approaches the real model as the parameter approaches zero.

e The parameters can be e.g. a step size for numerical ODE solving; note that we assume that A is
typically smaller than 1
fla+A) - f(=z)

o Example: numerical differentiation: y = f'(x), ¢(z,A) = A

/ 11000 A2 _
— Taylor expansion: ¢(z,A) = f@) + F@)A+ fA(x)T +- = f@) = f'(z) + f"(x)% NN
— Therefore p(z,A) — f'(z) = f”(m)% + f”’(az)A?2 + -+ 80 @ is O(A), i.e. order 1

Stability and Convergence

e If we have both an input error and an approximate algorithm, the errors compound

Ajg g
— Ag is the result of our input error, and § is the result of our approximate algorithm

d
o The propagated error is Ag = p(z + Az, A) — p(x, A) ~ d_QD . Ax
T

@ is numerically stable if the ratio
Ay
Az

If this ratio is greater than 1, then ¢ is unstable; if the ratio is exactly 1, then ¢ is marginally stable.

de
dx

<1

e The idea is that if you iteratively apply the algorithm, each time the error will be multiplied by this

ratio; therefore a numerically stable algorithm will decrease in error, but an unstable algorithm will
increase

Theorem

The numerical solution § = ¢(&, A) with input & = x + Az converges for A — 0 towards the exact
solution y = f(x) if

1. ¢(x,A) is consistent, i.e. lim ¢(x,A) = f(z)
A—0

2. p(z,A) is at least marginally stable for A — 0, i.e. iim .

—0

<1

	Lecture 3, Sep 15, 2023
	Numerical Methods and Stability
	Well- and Ill-Conditioned Problems
	Order and Consistency
	Stability and Convergence

