
Lecture 3, Sep 15, 2023
Numerical Methods and Stability

Figure 1: Model of errors in a numerical algorithm.

• Any numerical system will accumulate errors in a variety of ways; how can we quantify and evaluate
these errors?

• Some common sources of error are:
– Rounding/truncation errors, due to finite precision
– Approximate numerical algorithms, in which we simplify complex models for efficiency
– Input error, where the inputs to our algorithm are the outputs of an upstream algorithm which

itself has errors
– Modelling errors, where the model itself is a simplified representation of the real world (e.g. dis-

cretization)
• These errors can be categorized into two general sources: input error (∆x) and algorithm/approximation

error (∆f) which combine to result in an output error (∆y)
• Absolute errors are simply the absolute value of the error, |∆x|; relative errors are the absolute errors

divided by the parameter, δ
|∆x|

x
– If the true values of x, f , y are not known, we cannot compute the relative error and might have to

settle for an upper bound instead

Well- and Ill-Conditioned Problems

• First we will consider what happens when we have an ideal algorithm with some input error
• Intuitively, a problem is well-conditioned if, assuming an ideal algorithm (∆f = 0), the input error does

not grow when propagated through the algorithm, i.e. ∆ȳ < ∆x

– Consider the Taylor expansion: f(x + ∆x) = f(x) + df

dx
∆x + O(∆x2) = y + ∆ȳ

– ∆ȳ

y
= 1

y

(
f(x) + df

dx
· x

∆x

x
+ O(∆x2)

)
= df

dx

x

f(x) · ∆x

x
+ O(∆x2) = Kxδx + O(∆x2)

– If |δx| ≤ ε then |δy| ≈ |Kxδx| ≤ |Kx|ε, so given a bound on δx we can find a bound on δy
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Definition

The absolute condition number is defined as

Condx =
∣∣∣∣ ∆ȳ

∆x

∣∣∣∣ ≈
∣∣∣∣df

dx

∣∣∣∣
The relative condition number is defined as

condx =
∣∣∣∣ δȳ

δx

∣∣∣∣ ≈ |Kx| =
∣∣∣∣df

dx
· x

f(x)

∣∣∣∣
(note, multiplication not differentiation)

A problem is well-conditioned:
1. If and only if Condx is small (using absolute error)
2. If and only if condx ≤ 1 (using relative error)

• We typically want the absolute condition number to be small (but how small depends on the problem),
and we want the relative condition number to be less than 1; so most of the time the relative condition
number is used since it is easier to interpret

• Conditioning is a property of the problem, not a particular algorithm (since we assumed a perfect
algorithm to begin with)

• Example: linear function: y = ax

– df

dx
= a =⇒ Kx = dx

df
= a

x

ax
= 1

– The condition number is 1, so the relative error stays the same and the problem is well-conditioned

– The absolute error is smaller than the absolute input error if
∣∣∣∣df

dx

∣∣∣∣ = |a| < 1

* Intuitively, for a steeper function the error will get bigger, but for a smaller slope the error is
smaller

• Example: linear equation: find y such that ay + b = 0 where b is the input and a is fixed
– y = − b

a
= f(b)

– df

db
= −1

a
=⇒ Kb = df

db
· 1

f(b)b = −1
a

· −a

b
· b = 1

– This is another well-conditioned problem

–
∣∣∣∣df

db

∣∣∣∣ =
∣∣∣∣1
a

∣∣∣∣ so for small a, the absolute condition number is large

• Example: differential equation: find y such that ẏ = (λ + ∆λ)y, y(0) = y0 where λ is the input
– ŷ(t) = y0e(λ+∆λ)t = y0eλte∆λt ≈ y0eλt + y0teλt · ∆λ = y + ∆ȳ

* Note we used ex ≈ 1 + x

– The absolute condition number is ∆ȳ

∆λ
= y0teλt

– lim
t→∞

∣∣∣∣ ∆ȳ

∆λ

∣∣∣∣ =
{

0 λ < 0
∞ λ ≥ 0

– This shows that asymptotically stable differential equations (DEs that approach some fixed value)
are well-conditioned

* Exercise: what we think of the error as being on the initial condition? ẏ = λy, y(0) = y0 + ∆y0

• Example: root finding: find y such that g(y) = 0
– y is the output, but the input is hard to define since it is a function
– We can think of it as g(y) = 0, g(y + ∆ȳ) + ε = 0 so ε is an “input” representing an additive error

in g (see diagram above); if we shift g up or down, the location of the root y will also change by
an amount
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Figure 2: Representation of error in root finding.

– Taylor series expand: g(y) + g′(y)∆ȳ + ε = g′(y)∆ȳ + ε ≈ 0 =⇒
∣∣∣∣∆ȳ

ε

∣∣∣∣ ≈ 1
|g′(y)|

– We find that the absolute condition number is inversely proportional to slope; notice that for the
same shift, the left root with a larger slope is shifted a lot less

Order and Consistency

• We shall now consider what happens when we have an algorithmic error, while the input is ideal

Definition

Let φ(x, ∆) represent some approximate algorithm that models f(x), where ∆ are the parameters of
the algorithm; φ’s accuracy is of order p (alternatively, φ is O(∆p)) if

ỹ = φ(x, ∆) − f(x) ∝ ∆p

φ is consistent if
lim

∆→0
φ(x, ∆) = f(x)

i.e. the approximate algorithm φ approaches the real model as the parameter approaches zero.

• The parameters can be e.g. a step size for numerical ODE solving; note that we assume that ∆ is
typically smaller than 1

• Example: numerical differentiation: y = f ′(x), φ(x, ∆) = f(x + ∆) − f(x)
∆

– Taylor expansion: φ(x, ∆) =
f(x) + f ′(x)∆ + f ′′(x) ∆2

2 + · · · − f(x)
∆ = f ′(x) + f ′′(x)∆

2 + · · ·

– Therefore φ(x, ∆) − f ′(x) = f ′′(x)∆
2 + f ′′′(x)∆2

6 + · · · so φ is O(∆), i.e. order 1

Stability and Convergence

• If we have both an input error and an approximate algorithm, the errors compound
• ∆y = φ(x + ∆x, ∆) − f(x) = (φ(x + ∆x, ∆) − φ(x, ∆))︸ ︷︷ ︸

∆ỹ

+ (φ(x, ∆) − f(x))︸ ︷︷ ︸
ỹ

= ∆ỹ + ỹ

– ∆ỹ is the result of our input error, and ỹ is the result of our approximate algorithm
• The propagated error is ∆ỹ = φ(x + ∆x, ∆) − φ(x, ∆) ≈ dφ

dx
· ∆x

Definition

φ is numerically stable if the ratio ∣∣∣∣ ∆ỹ

∆x

∣∣∣∣ =
∣∣∣∣dφ

dx

∣∣∣∣ < 1

If this ratio is greater than 1, then φ is unstable; if the ratio is exactly 1, then φ is marginally stable.
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• The idea is that if you iteratively apply the algorithm, each time the error will be multiplied by this
ratio; therefore a numerically stable algorithm will decrease in error, but an unstable algorithm will
increase

Theorem

The numerical solution ŷ = φ(x̂, ∆) with input x̂ = x + ∆x converges for ∆ → 0 towards the exact
solution y = f(x) if

1. φ(x, ∆) is consistent, i.e. lim
∆→0

φ(x, ∆) = f(x)

2. φ(x, ∆) is at least marginally stable for ∆ → 0, i.e. lim
∆→0

∣∣∣∣dφ

dx

∣∣∣∣ ≤ 1
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