
Lecture 22, Dec 1, 2023
Gaussian Probability Distributions

• A 1-dimensional Gaussian PDF is given by f(x|µ, σ2) = 1√
2πσ2

exp
(

−1
2

(x − µ)2

σ2

)
• Why are Gaussians common?

– Central limit theorem: averages of independently drawn random variables become normally
distributed when the number of random variables is sufficiently large

* If we don’t actually know the distributions, we can usually approximate it as a Gaussian
* Let y1, . . . , yn be a sequence of n independent random variables drawn from a distribu-

tion with finite mean and variance and let ȳ = y1 + · · · + yn, then for some a, b ∈ R,

lim
n→∞

Pr
(

a <
ȳ − nµ√

nσ
< b

)
=
� b

a

1√
2π

e− 1
2 y2

dy, i.e. ȳ is Gaussian distributed with mean nµ

and variance nσ2

* This still holds if the yi come from different distributions, provided the mean and variance are
finite for each PDF

– They are easy to handle mathematically – you only need the mean and variance
– They remain Gaussian under many operations (summation, marginalization, conditioning, etc)

• In multiple variables, f(x|µ, Σ) = 1√
(2π)M det Σ

exp
(

−1
2(x − µ)T Σ−1(x − µ)

)
– µ ∈ RM is the mean and Σ ∈ RM×M is the symmetric, positive definite covariance matrix
– This can be visualized as an ellipse around the mean

Figure 1: Probability of samples lying in different intervals around the mean.

• The above table shows the probability of a sample lying within a certain number of standard deviations
of the mean

– Note that this is for 1 dimension only; in higher dimensional space we need to look at probability
ellipses

• Given some multivariate Gaussian x ∼ N (µ, Σ), we can partition it as x =
[
x1
x2

]
, µ =

[
µ1
µ2

]
, Σ =[

Σ11 Σ12
Σ21 Σ22

]
, then we can write f(x) = f(x1, x2)

– We can marginalize to find f(x1) = N (µ1, Σ11) =
� ∞

−∞
f(x1, x2|µ, Σ) dx2 and likewise for x2

* Marginalization picks out the relevant subblocks of the partitioned Gaussian, and gives
Gaussian marginals

– For conditioning, f(x1|x2) = N (µ1 + Σ12Σ−1
22 (x2 − µ2), σ11 − Σ12Σ−1

22 Σ21)
* The factors are Gaussian
* This can be derived using the Schur complement

• Using an LDL decomposition we can find the inverse of Σ, and then substitute into
(x − µ)T Σ−1(x − µ)

• The sum of two independent Gaussians is Gaussian: y1 ∼ N (a1, B1), y2 ∼ N (a2, B2) =⇒ c1y1 +
c2y2 ∼ N (c1a1 + c2a2, c2

1B1 + c2
2B2)

– This extends to matrix coefficients, since the transformation is linear
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– In general passing a Gaussian through a linear transformation preserves the Gaussian property
– C1y1 + C2y2 ∼ N (C1a1 + C2a2, CT

1 B1C1, CT
2 B2C2)

• However, Gaussians don’t remain Gaussian after passing through a nonlinear mapping
– We can approximate using a linear function around the mean, so that if y = g(x), then x ∼

N (µx, σ2
x) =⇒ y ∼ N (µy, a2σ2

x)

* δy = y − µy ≈ dg(x)
dx

∣∣∣∣
x=µx

(x − µx) = aδx

* σ2
y = E[δy2] = a2E[δx2] = a2σ2

x

– If the nonlinear function can be approximated as linear in [−3σ, 3σ], then the resulting Gaussian
is a good approximation

– In multiple variables: x ∼ N (µx, Σx), y = g(x) =⇒ y ∼ (g(µx), AΣxAT ), where A =
∂g(x)

∂x

∣∣∣∣
x=µx

is the Jacobian of g(x), Aij = ∂gi

∂xj

* To see this, note ∆y = ∂g(x)
∂x

∣∣∣∣
x=µx

∆x, so Σy = E[∆y∆yT ] = AE[∆x∆xT ]AT = AΣxAT

• We can fuse two Gaussians by multiplying them together and then renormalizing; this gives another
Gaussian

– This comes up when we want to combine multiple sources of information with different uncertainties
– For two Gaussians with means µ1, µ2 and variances σ2

1 , σ2
2 , then 1

σ2 = 1
σ2

1
+ 1

σ2
2

, µ

σ2 = µ1

σ2
1

+ µ2

σ2
2

* Notice the means are weighted by the inverse of their variances, since a lower variance means
more certainty

* The inverse variance is sometimes referred to as the precision of the Gaussian

– The direct product of two Gaussians has the exponent (x − µ)2

σ2 = (x1 − µ1)2

σ2
1

+ (x2 − µ2)2

σ2
2

* x2 − 2µx + µ2

σ2 = (σ2
1 + σ2

2)x2 − 2(σ2
2µ1 + σ2

1µ2)x + (σ2
2µ2

1 + σ2
2µ2

2)
σ2

1σ2
2

* Comparing the x2 terms gives 1
σ2 = σ2

1 + σ2
2

σ2
1σ2

2
= 1

σ2
1

+ 1
σ2

2

* Comparing the x terms gives µ

σ2 = σ2
2µ1 + σ2

1µ2

σ2
1σ2

2
= µ1

σ2
1

+ µ2

σ2
2

* Note the constant terms are not equal, but this is fixed by normalization
– Note the product of Gaussians is not normalized, so we need to find the normalization constant so

that the distribution integrates to 1
* In practice however we almost never have to compute this, since we usually only keep track of

the mean and variance

– In the multivariate case, N (µ, Σ) = β

N∏
n=1

N (µn, Σn)

* Σ−1 =
n∑

n=1
Σ−1

n

* Σ−1µ =
N∑

n=1
Σ−1

n µn

• Since Gaussians remain Gaussian under many different useful operations, it often suffices to keep track
of only the sum and (co)variance of the distributions

• Under the assumption that random variables are Gaussian, analytic results for state estimation and
other applications are available (e.g. a Kalman filter); without this assumption PDFs often have to be
propagated through sampling (e.g. Monte Carlo methods)
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