Lecture 22, Dec 1, 2023

Gaussian Probability Distributions

1 1(z—p)?
« A 1-dimensional Gaussian PDF is given by f(z|u,0?) = Noroe exp (—QM)
o

o
e Why are Gaussians common?
— Central limit theorem: averages of independently drawn random variables become normally
distributed when the number of random variables is sufficiently large
* If we don’t actually know the distributions, we can usually approximate it as a Gaussian
* Let y1,...,yn be a sequence of n independent random variables drawn from a distribu-
tion with ﬁnite mean and variance and let ¥ = y; + -+ + y,, then for some a,b € R,
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* This still holds if the y; come from different distributions, provided the mean and variance are
finite for each PDF
— They are easy to handle mathematically — you only need the mean and variance
— They remain Gaussian under many operations (summation, marginalization, conditioning, etc)

e~ 2Y dy, i.e. y is Gaussian distributed with mean nu

1 1
o In multiple variables, f(x|u,X) = W exp (—2(:13 — ) 'Sz — )

— p € RM is the mean and 3 € RM*M is the symmetric, positive definite covariance matrix
— This can be visualized as an ellipse around the mean

Pr(—no < x < no)
7 ~ 0.5
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Figure 1: Probability of samples lying in different intervals around the mean.

e The above table shows the probability of a sample lying within a certain number of standard deviations
of the mean

— Note that this is for 1 dimension only; in higher dimensional space we need to look at probability
ellipses

o Given some multivariate Gaussian  ~ AN (u, X), we can partition it as ¢ = {21] S = [Hl} , 2 =
2
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o 222} then we can write f(x) = f(x1,x2)

— We can marginalize to find f(z1) = N (p1,X11) = / f(x1, 2|, ) ds and likewise for xo

* Marginalization picks out the relevant subblocks of the partitioned Gaussian, and gives
Gaussian marginals
— For conditioning, f(x1|z2) = N (1 + 2122521 (T2 — p2),011 — 2122521221)
* The factors are Gaussian
* This can be derived using the Schur complement
e Using an LDL decomposition we can find the inverse of 3, and then substitute into
(—p)'= - p)
e The sum of two independent Gaussians is Gaussian: y; ~ N (a1, B1),ys ~ N (a2, B2) = c1y; +
caya ~ N(cray + caan, 2By + c2By)
— This extends to matrix coefficients, since the transformation is linear



— In general passing a Gaussian through a linear transformation preserves the Gaussian property
- Cly1 + Cg’yg ~ N(Clal + CQCLQ, ClTBlCl, CgBQCQ)
o However, Gaussians don’t remain Gaussian after passing through a nonlinear mapping
— We can approximate using a linear function around the mean, so that if y = g(x), then = ~
N(uz,02) =y~ Nlpy, a*o3)
dg(z)
doz |,_ s
* ‘75 = E[(Syz] = a2E[6x2] = a20§
— If the nonlinear function can be approximated as linear in [—3c, 30], then the resulting Gaussian
is a good approximation
— In multiple variables: & ~ N(p., 2.),y = g(x) = y ~ (g(ps), AZ,AT), where A =

Foy=y -y = (z — px) = adz

99(@) is the Jacobian of g(x), A;; = 09
ox T=py 8xj
* To see this, note Ay = 9(@) Az, so ¥, = E[AyAy”| = AE[AzAz"|AT = AS, AT

ox
T=Hz
e We can fuse two Gaussians by multiplying them together and then renormalizing; this gives another
Gaussian
— This comes up when we want to combine multiple sources of information with different uncertainties
I N e

— For two Gaussians with means pq, e and variances 0%,03, then — =5+ 5,5 =5+ =5
o oy 05 0 oy o5
* Notice the means are weighted by the inverse of their variances, since a lower variance means
more certainty
* The inverse variance is sometimes referred to as the precision of the Gaussian
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— The direct product of two Gaussians has the exponent ( QM) = (21 2M1) + (2 2,u2)
o o7 oF

o T2 = 2ux+p®  (0f +03)a® — 2(03u + ofps)x + (03pF + o3 p3)
2 - 2 .2
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* Comparing the z? terms gives — = % ==+
o 0i{05 oy 03
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* Comparing the z terms gives — = % ==+
o 0i{05 oi 03

* Note the constant terms are not equal, but this is fixed by normalization
— Note the product of Gaussians is not normalized, so we need to find the normalization constant so
that the distribution integrates to 1
* In practice however we almost never have to compute this, since we usually only keep track of

the mean and variance
N

— In the multivariate case, N'(u,¥) = 3 H N(pn, 35)

n=1
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e Since Gaussians remain Gaussian under many different useful operations, it often suffices to keep track

of only the sum and (co)variance of the distributions

e Under the assumption that random variables are Gaussian, analytic results for state estimation and
other applications are available (e.g. a Kalman filter); without this assumption PDFs often have to be
propagated through sampling (e.g. Monte Carlo methods)
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