
Lecture 21, Nov 29, 2023
Extracting Estimates from PDFs
Maximum Likelihood (ML)

• This method is often used when x is an unknown constant parameter without a known probabilistic
description, i.e. we have no prior information about x

– e.g. in Bayesian estimation, we had a prior (prediction) for x, but here we are assuming no
knowledge of that

• For a given observation y and observation model f(y|x), the method seeks a value of x that maximizes
the likelihood of observing y, i.e. x̂ML = argmax

x∈X
f(y|x)

– f(y|x) as a function of x is the likelihood function
– x is a parameter of the observation model; e.g. the model can be a Gaussian, and x may denote

its mean or variance, etc
• Example: Consider two measurements of a scalar quantity x ∈ R: y1 = x + w1, y2 = x + w2 where

w1, w2 ∼ N (0, 1)
– Note N (µ, σ) denotes a Gaussian with mean µ and variance σ

– f(wi) = 1√
2π

exp
(

−w2
i

2

)
– We can consider w1, w2 as additive noise parameters; this essentially makes yi ∼ N (x, 1)

* Note formally we would use a change of variables: yi = x + wi =⇒ wi = yi − x
* Now we can just substitute wi into the Gaussian equation since we have a linear relationship

– y1, y2 are conditionally independent on x, so f(y1, y2|x) = f(y1|x)f(y2|x) = 1
2π

e− 1
2 ((y1−x)2+(y2−x)2)

– This is now an unconstrained optimization problem; we can differentiate with respect to x and set
this to 0

– We get (y1 − x̂) + (y2 − x̂) = 0 =⇒ x̂ = y1 + y2

2 , which is just the average
• Suppose we generalize the last example to a collection of measurements z = Hx + w where z, w ∈

Rm, x ∈ Rn and m > n; as above wi ∼ (0, 1) are independent

– Let H =

hT
1
...

hT
m

 where hT
i =

[
hi1 · · · hin

]
– Then zi = hT

i x + wi

– As before f(z|x) ∝ exp
(

−1
2

(
(z1 − hT

1 x)2 + · · · + (zm − hT
mx)2))

– Differentiating with respect to each xj we have (z1 − hT
1 x̂)h1j + · · · + (zm − hT

mx̂)hmj =[
h1j · · · hmj

]
(z − Hx̂) = 0

– With all the rows, we get HT (z − Hx̂) = 0 =⇒ x̂ = (HT H)−1HT z, which is the least squares
solution

* Note we can write w(x) = z − Hx, so w is some error term; then x̂ = argmin
x

wT w

* If not all the errors have the same variance, then we have weighted least squares

Figure 1: Undesirable case of maximum likelihood.
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• Limitations of ML:
– In general ML is more sensitive to outliers and modelling error
– The maximum of the distribution may not always be what we want – we may lose robustness

* In the example above, ML will give x1 if there are measurements on it, which is very sensitive
to changes in the data or model – small variations in the model might cause x1 to have a
likelihood of zero instead

* Choosing x2 is more robust; since the distribution is wider, we’re less sensitive to changes in
the data or model

* Outliers that happen to line up with a peak can give us an incorrect estimate
– We might also have prior knowledge about x (i.e. its PDF), which ML cannot incorporate

Maximum a Posteriori (MAP)

• If we have a PDF for x, we can use MAP
• From Bayes’s theorem: f(x|y) = f(y|x)f(x)

f(y)
• With MAP, we have x̂MAP = argmax

x
f(y|x)f(x)

– We want to maximize the choice of the parameter that makes both the observations and the
parameter itself most likely

• If f(x) is constant, then x̂MAP = x̂ML

• As with ML, we are still maximizing a function over x, so the same sensitivity to outliers and modelling
error still applies

• Example: consider the scalar observation y = x + w, where w ∼ N (0, 1), x ∼ N (x̄, σ2
x) and x, w

independent

– f(x) ∝ exp
(

−1
2

(x − x̄)2

σ2
x

)
– f(y|x) ∝ exp

(
−1

2(y − x)2
)

– f(y|x)f(x) ∝ exp
(

−1
2

(
(x − x̄)2

σ2
x

+ (y − x)2
))

– Differentiating with respect to x and setting to zero gives the following solution:

– x̂MAP = 1
1 + σ2

x

x̄ + σ2
x

1 + σ2
x

y

* Notice that this is a weighted sum between the mean of the prior distribution and the new
measurement

– Consider the extreme cases:
* σ2

x = 0 =⇒ x̂MAP = x̄ (if we’re certain about x before any measurements, we just get the
max of the prior)

* σ2
x → ∞ =⇒ x̂MAP = y (if we’re uncertain about x, we just get the new measurement; note

this is the same as maximum likelihood)
• This is most often used in state estimation

Minimum Mean Squared Error (MMSE)

• The MMSE is the a posteriori estimate that minimizes the mean squared error
• x̂MMSE = argmin

x̂
Ex|y

[
(x − x̂)T (x − x̂)|y

]
– Expand and differentiate with respect to x̂: 2x̂ − 2E[x|y] = 0 =⇒ x̂ = E[x|y]
– The MMSE estimate is the expected value of x conditioned on y

• While MAP is the maximum of the posterior, MMSE is the mean of the posterior
• Note we did not constrain x̂ in our minimization, but for some applications we might want to introduce

constraints
– e.g. for a discrete random variable with sample space X , we need to constrain the minimization to

x̂ ∈ X
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Figure 2: Undesirable case of MMSE.

• MMSE always takes the whole probability mass into consideration, whereas MAP and ML just pick the
maximum probability – in some cases, this is desirable, while in other cases it is not

– Consider the bimodal distribution of f(x|y) above; MMSE would give x1, but the probability of
having x actually being near x1 is zero

* MAP would have picked one of the two peaks
– On the other hand, the MMSE is typically more robust to modelling errors and outliers, since it is

not as sensitive to sharp peaks
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