Lecture 21, Nov 29, 2023

Extracting Estimates from PDFs
Maximum Likelihood (ML)

e This method is often used when x is an unknown constant parameter without a known probabilistic
description, i.e. we have no prior information about
— e.g. in Bayesian estimation, we had a prior (prediction) for x, but here we are assuming no
knowledge of that
 For a given observation y and observation model f(y|x), the method seeks a value of  that maximizes
the likelihood of observing y, i.e. #M% = argmax f(y|x)
reX

— f(y|z) as a function of x is the likelihood function

— x is a parameter of the observation model; e.g. the model can be a Gaussian, and & may denote
its mean or variance, etc

o Example: Consider two measurements of a scalar quantity x € R: y; = = + w1, y2 = = + wy where
w1, W NN(O,].)
— Note N (u, o) denotes a Gaussian with mean p and variance o
1 w?

1m0 = e (=)

— We can consider wy,ws as additive noise parameters; this essentially makes y; ~ N (z,1)
* Note formally we would use a change of variables: y;, =z +w; =— w; =y; — x
* Now we can just substitute w; into the Gaussian equation since we have a linear relationship
1 P
— 91, y2 are conditionally independent on x, so f(y1,y2|x) = f(y1|2) f(y2]x) = 27@*%((91*w)2+(y271)2)
T
— This is now an unconstrained optimization problem; we can differentiate with respect to x and set
this to 0
. N . Y1ty S
- Weget (y1 —2)+(y2—2)=0 = &= 5 which is just the average

e Suppose we generalize the last example to a collection of measurements z = Hx + w where z,w €
R™,x € R" and m > n; as above w; ~ (0,1) are independent
T
hi
Let H= | : | where h] = [hy;, -+ hip]
T
h;,
— Then Z; = h;Tﬂ'J + w;

— As before f(z|x) ox exp (; (21 —hi@)* + - + (2 — h,Tn:c)2)>

— Differentiating with respect to each x; we have (21 — hi @)h1; + -+ + (2 — RL&)hy; =
[h1j =+ hm] (z — H&) =0

— With all the rows, we get H? (z — H&) =0 = & = (H" H) ' H" 2z, which is the least squares
solution

* Note we can write w(x) = z — Hx, so w is some error term; then & = argmin w” w

xT
* If not all the errors have the same variance, then we have weighted least squares
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Figure 1: Undesirable case of maximum likelihood.



e Limitations of ML:
— In general ML is more sensitive to outliers and modelling error
— The maximum of the distribution may not always be what we want — we may lose robustness
* In the example above, ML will give x; if there are measurements on it, which is very sensitive
to changes in the data or model — small variations in the model might cause x; to have a
likelihood of zero instead
* Choosing x> is more robust; since the distribution is wider, we’re less sensitive to changes in
the data or model
* Qutliers that happen to line up with a peak can give us an incorrect estimate
— We might also have prior knowledge about z (i.e. its PDF), which ML cannot incorporate

Maximum a Posteriori (MAP)

e If we have a PDF for x, we can use MAP
f(ylz)f(x)

f(y)
+ With MAP, we have M7 = argmax f(y|z) f(z)

o From Bayes’s theorem: f(x|y) =

— We want to maximize the cafloice of the parameter that makes both the observations and the
parameter itself most likely
o If f(x) is constant, then M4 = gME
o As with ML, we are still maximizing a function over @, so the same sensitivity to outliers and modelling
error still applies

« Example: consider the scalar observation y = x + w, where w ~ N(0,1),z ~ N(z,02%) and z,w
independent
1(x —x)?
— f(z) ocexp (‘2%26

-~ flole) coxp (50— 2 )
Fulonf(@) xe (-3 (Lo 4 - ar))
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Differentiating with respect to z and setting to zero gives the following solution:
~MAP [ Oz
* _1+J§x+l+a§y
* Notice that this is a weighted sum between the mean of the prior distribution and the new
measurement
— Consider the extreme cases:
* ai =0 = #MAP =z (if we’re certain about x before any measurements, we just get the
max of the prior)
* 02 500 = #MAP — 4 (if we’re uncertain about x, we just get the new measurement; note
this is the same as maximum likelihood)

o This is most often used in state estimation

Minimum Mean Squared Error (MMSE)

e The MMSE is the a posteriori estimate that minimizes the mean squared error
~MMSE

. & = argmin E,, [(z — &)" (z — &)|y]
T
— Expand and differentiate with respect to &: 2& — 2E[z|y] = 0 = & = E[z|y]
— The MMSE estimate is the expected value of & conditioned on y
e While MAP is the maximum of the posterior, MMSE is the mean of the posterior
o Note we did not constrain & in our minimization, but for some applications we might want to introduce
constraints
— e.g. for a discrete random variable with sample space X', we need to constrain the minimization to
reX
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Figure 2: Undesirable case of MMSE.

« MMSE always takes the whole probability mass into consideration, whereas MAP and ML just pick the
maximum probability — in some cases, this is desirable, while in other cases it is not
— Consider the bimodal distribution of f(x|y) above; MMSE would give 27, but the probability of
having z actually being near z; is zero
* MAP would have picked one of the two peaks
— On the other hand, the MMSE is typically more robust to modelling errors and outliers, since it is
not as sensitive to sharp peaks
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