Lecture 20, Nov 24, 2023

Sampling Distributions in Practice

- Most math libraries have functions that generate uniformly distributed random real numbers in the range (0, 1)
 - e.g. rand() in MATLAB, np.random.rand() in Python
 - This interval will sometimes be closed or half-open, but practically we don't care

$$f_u(u) = \begin{cases} 1 & u \in (0,1) \\ 0 & \text{otherwise} \end{cases}$$

- Repeated calls to the RNG are independent
- The generator can usually be seeded, e.g. with np.random.seed(); this gives the same sequence of random numbers for the same seed
- How do we draw samples from arbitrary, non-uniform PDFs?

One Variable, Discrete

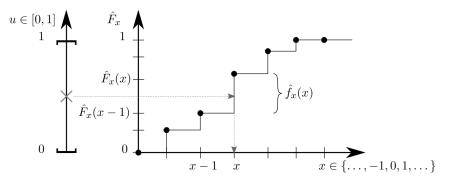


Figure 1: Algorithm to select one discrete random variable.

- Given a desired PDF $\hat{f}_x(x)$ for a DRV x, we want to come up with a procedure to generate x from u
- WLOG let $\mathcal{X} = \mathbb{Z}$ (note we can remap any DRV to be over the integers)
- The cumulative distribution function (CDF) of \hat{f}_x is $\hat{F}_x(x) = \sum_{\bar{x}=-\infty}^x \hat{f}_x(\bar{x})$
 - Note $\hat{F}_x(-\infty) = 0$ and $\hat{F}_x(\infty) = 1$, and \hat{F}_x is a non-decreasing function
 - We will make use of the fact that both \hat{F}_x and the output of the RNG range from 0 to 1
- Let u be generated from $f_u(u)$; solve for x such that $\hat{F}_x(x-1) < u$, $\hat{F}_x(x) \ge u$; we claim that x will have PDF $\hat{f}_x(x)$
 - Intuition: we chop up the interval [0, 1], so that each x gets a portion of the interval that is proportional to $\hat{f}_x(x)$
 - * To see this note $\hat{F}_x(x) \hat{F}_x(x-1) = \hat{f}_x(x)$
- Note that we can always solve for such an x given u, since \hat{F}_x ranges from 0 to 1
 - There may be issues with u = 0 and u = 1, but this probability is technically 0 u is a CRV - In practice we can explicitly check for these cases and re-sample if we obtain them
- For a fixed x, to have $\hat{F}_x(x-1) < u \le \hat{F}_x(x)$ we need $\hat{F}_x(x-1) < u \le \hat{F}_x(x-1) + \hat{f}_x(x)$ - Therefore $\int_{\hat{F}_x(x-1)}^{\hat{F}_x(x)} f_u(u) \, \mathrm{d}u = \int_{\hat{F}_x(x-1)}^{\hat{F}_x(x-1) + \hat{f}_x(x)} 1 \, \mathrm{d}u = \hat{f}_x(x)$
 - So the probability that we get x is $\hat{f}_x(x)$

Multiple Variables, Discrete

• If we want $\hat{f}_{xy}(x,y)$

- If \mathcal{X} and \mathcal{Y} are finite, with N_x and N_y elements respectively, let $\mathcal{Z} = \{1, 2, \dots, N_x N_y\}$, and define a one-to-one mapping between elements of \mathcal{Z} and (x, y), and sample with the one-variable algorithm
- Otherwise, decompose $\hat{f}_{xy}(x,y)=\hat{f}_{x|y}(x|y)\hat{f}_{y}(y)$
 - Apply the one-variable algorithm to sample y first from $\hat{f}_y(y)$ (obtained by marginalizing the joint PDF)
 - Then apply the same algorithm again to get a value for x from $\hat{f}_{x|y}(x|y)$
- These algorithms both apply to any number of DRVs

One Variable, Continuous

- Let $\hat{F}_x(x) = \int_{-\infty}^x \hat{f}_x(\bar{x}) \mathrm{d}\bar{x}$
- Let u be generated from $f_u(u)$; then have $x = \hat{F}_x^{-1}(u)$, and x will have PDF $f_x(x) = \hat{f}_x(x)$ - x is any value that satisfies $u = \hat{F}_x(x)$; this will still work even if \hat{f}_x is zero sometimes
- Assume that \hat{F}_x is strictly increasing, then we can solve for a unique x given any u
 - For some arbitrary a, $F_x(a) = \Pr(x \le a) = \Pr(\hat{F}_{x, \cdot}^{-1}(u) \le a)$
 - Applying \hat{F}_x to both sides, this becomes $\Pr(u \leq \hat{F}_x(a))$
 - Since u is uniform, $\Pr(u \leq \hat{F}_x(a)) = \hat{F}_x(a)$
 - Therefore $F_x(a) = \hat{F}_x(a)$, so we must have $f_x(x) = \hat{f}_x(x)$

Multiple Variables, Continuous

• For multiple CRVs, again decompose $\hat{f}_{xy}(x,y) = \hat{f}_{x|y}(x|y)\hat{f}_y(y)$, and apply the one-variable algorithm to get values for y first from $\hat{f}_y(y)$, and then x from $\hat{f}_{x|y}(x|y)$