
Lecture 20, Nov 24, 2023
Sampling Distributions in Practice

• Most math libraries have functions that generate uniformly distributed random real numbers in the
range (0, 1)

– e.g. rand() in MATLAB, np.random.rand() in Python
– This interval will sometimes be closed or half-open, but practically we don’t care

– fu(u) =
{

1 u ∈ (0, 1)
0 otherwise

• Repeated calls to the RNG are independent
• The generator can usually be seeded, e.g. with np.random.seed(); this gives the same sequence of

random numbers for the same seed
• How do we draw samples from arbitrary, non-uniform PDFs?

One Variable, Discrete

Figure 1: Algorithm to select one discrete random variable.

• Given a desired PDF f̂x(x) for a DRV x, we want to come up with a procedure to generate x from u
• WLOG let X = Z (note we can remap any DRV to be over the integers)

• The cumulative distribution function (CDF) of f̂x is F̂x(x) =
x∑

x̄=−∞
f̂x(x̄)

– Note F̂x(−∞) = 0 and F̂x(∞) = 1, and F̂x is a non-decreasing function
– We will make use of the fact that both F̂x and the output of the RNG range from 0 to 1

• Let u be generated from fu(u); solve for x such that F̂x(x − 1) < u, F̂x(x) ≥ u; we claim that x will
have PDF f̂x(x)

– Intuition: we chop up the interval [0, 1], so that each x gets a portion of the interval that is
proportional to f̂x(x)

* To see this note F̂x(x) − F̂x(x − 1) = f̂x(x)
• Note that we can always solve for such an x given u, since F̂x ranges from 0 to 1

– There may be issues with u = 0 and u = 1, but this probability is technically 0 u is a CRV
– In practice we can explicitly check for these cases and re-sample if we obtain them

• For a fixed x, to have F̂x(x − 1) < u ≤ F̂x(x) we need F̂x(x − 1) < u ≤ F̂x(x − 1) + f̂x(x)

– Therefore
� F̂x(x)

F̂x(x−1)
fu(u) du =

� F̂x(x−1)+f̂x(x)

F̂x(x−1)
1 du = f̂x(x)

– So the probability that we get x is f̂x(x)

Multiple Variables, Discrete

• If we want f̂xy(x, y)

1

• If X and Y are finite, with Nx and Ny elements respectively, let Z = { 1, 2, . . . , NxNy }, and define a
one-to-one mapping between elements of Z and (x, y), and sample with the one-variable algorithm

• Otherwise, decompose f̂xy(x, y) = f̂x|y(x|y)f̂y(y)
– Apply the one-variable algorithm to sample y first from f̂y(y) (obtained by marginalizing the joint

PDF)
– Then apply the same algorithm again to get a value for x from f̂x|y(x|y)

• These algorithms both apply to any number of DRVs

One Variable, Continuous

• Let F̂x(x) =
� x

−∞
f̂x(x̄)dx̄

• Let u be generated from fu(u); then have x = F̂ −1
x (u), and x will have PDF fx(x) = f̂x(x)

– x is any value that satisfies u = F̂x(x); this will still work even if f̂x is zero sometimes
• Assume that F̂x is strictly increasing, then we can solve for a unique x given any u

– For some arbitrary a, Fx(a) = Pr(x ≤ a) = Pr(F̂ −1
x (u) ≤ a)

– Applying F̂x to both sides, this becomes Pr(u ≤ F̂x(a))
– Since u is uniform, Pr(u ≤ F̂x(a)) = F̂x(a)
– Therefore Fx(a) = F̂x(a), so we must have fx(x) = f̂x(x)

Multiple Variables, Continuous

• For multiple CRVs, again decompose f̂xy(x, y) = f̂x|y(x|y)f̂y(y), and apply the one-variable algorithm
to get values for y first from f̂y(y), and then x from f̂x|y(x|y)

2

	Lecture 20, Nov 24, 2023
	Sampling Distributions in Practice
	One Variable, Discrete
	Multiple Variables, Discrete
	One Variable, Continuous
	Multiple Variables, Continuous

