Lecture 2, Sep 13, 2023

System Modeling (Continuous and Discrete Time)
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Figure 1: Example 1: Modeling the wheel motion of a car.
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Figure 2: Modeling the example as a simple mechanical system.

e Example 1: modeling the wheel motion of a car when it encounters a bump in the road
— Assumptions: constant velocity, 2D system model, variable step height y, ()
— Begin with a simple mechanical system:
* k, is a spring representing the wheel; m is the mass of the wheel axle
* The spring-damper system k;, and ¢ model the shock absorber in the car
* In addition, we assume mjy, > m, so that the car itself is approximately stationary and only
the wheel axle moves; we also assume the suspension is 1D and that the car is at rest in the
vertical direction before we hit the bump
— Now we can use Newton’s second law to form a mathematical model:
*mij =Y f=—cy—ky— ku(y—ys)
* mij+ g+ (kb + kw)y = mij + cj + ky = kuwy(s) = u(t)
o This is a second order, linear, nonhomogeneous, time-invariant system
o The initial conditions are y(0) = ¢(0) = 0 and we wish to find y, g, for t > 0
* Now we need to represent it in a standard form
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e This is now in standard form: & = Az + bu, z(0) = {
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e This form corresponds to the following simulation block diagram:
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Figure 3: Simulation block diagram of a standard linear system.

e Example 2: modelling how a drone reacts to given motor inputs
— Assumptions: horizontal motion is stabilized
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Figure 4: Simple mechanical system for Example 2.

— Applying Newton’s laws:

*mi=-mg—ci+f
* We again have a second order, linear, nonhomogeneous, time-invariant system
P 0 1 5 0
— In standard form: L} = lo _c [z] + (1 |u
m m

— But how do we actually perform the simulation?

In general for any linear system we have: a set of inputs w(¢) (which we partially control); a set of
outputs y(t) which we can measure; and states x(¢) that are internal to the system which we cannot
directly manipulate or measure.

To model a linear system in continuous time:

(t) = Ax(t) + Bu(t),z(0) = =g
y(t) = Cx(t) + Du(t)

—~

where A, B, C, D are state matrices.
To model a nonlinear system in continuous time:

@(t) = f(z(t), u(t)),z(0) = zo
y(t) = h(z(t), u(t))

o If we have n states, m inputs and p outputs, then Aisn xn, Bisnxm, C is pxnand D is pxm
o In practice, we often need to represent things in discrete time, since the computers running simulations
are discrete
e To represent things in discrete time, we replace continuous signals with a sequence of regular samples
at t, = kh
— t, = kh is the sampling time
- fs= 1 is the sampling frequency
So how do we convert our continuous model to a discrete one?
— Recall that the solution for &(t) = Az is & = e?tay
— Over a short time interval ¢, <t < tx41 the solution evolves as:

t
* () = e (ty,) +/ A7) Bu(r) dr

ty

t
_ eA(tftk)w(tk) + / cAlt-7) B dru(ty)
ty

= (I)(t, tk)w(tk) + F(t, tk)u(tk)

e Note that we have assumed u(7) = u(tg) (i.e. u stays constant over the timestep), which
is referred to as a zero-order hold

* $(tk+1) = (I)(thrl,tk):l:(tk) + P(tk+1,tk)u(t‘k) = Adil)(tk;) + Bdu(tk)
¢ We have discretized the system
o We now have difference equations for the system (h is the sampling period):
— Tpy1 = Agzp + Bauyg



— yp = Czp + Duy,
~ Ay = ®(tgp,ty) = e
h
— By =T (tgs1,tx) = / A" dr'B
0
e To solve for A, and By:

d d

— Note that E(I)(t) = ®(t)A and &I‘(t) =®(t)B

d [<I>(t) I‘(t)} _ [@(t) I‘(t)] [A B}

— Using this we have: | o I 0 I 0 0

* Now we can use another matrix exponential to solve this

o B (lo 5])

The matrix exponential can be calculated with the Matlab function expm() or scipy function
scipy.linalg.expm(). We can also manually do a series expansion of the matrix exponential
function. Alternatively, c2d() in Matlab or control.matlab.c2d() can be used to do the same
conversion (which computes the matrix exponentials internally).

e We can now recursively apply the difference equations to propagate the state:
— x1 = Agxo + Baug
— x9 = Ay(Agxo + Byug) + Bausg
— x3 = Ag(Aixo + AyBgug + Byuy) + Byu, and so on

T Uo
T2 Uy

— We can stack all these together: . =F . + Fyxg
TN UN-—1

A system is reachable or controllable if and only if
rank [AY "By AY?B; -+ Bg|=N

where N is the dimension of the state xy. Physically this means that there is a given sequence of
control inputs to reach any state.

A system is observable if and only if

C
CA,
rank . =N
cA} !

Physically this means that given some sequence of outputs, we can derive the system state.

o Example: consider the system: &(t) = u(t),y(t) = z(t), 2(0) = xo; find the difference equations assuming
a zero-order hold at the input and sampled output, with sampling period h
— Note that we have A =0and B =1
— For tk S t S tk+1:



* x(t) = x(ty) —|—/ u(r)dr

ty

= z(ty) —|—/ 1dru(ty)

ty
= x(tk) + (t - tk)u(tk)
* Applying this at t = tg11 = tx + h we get xxr1 = T + hug
e Example: & =u

— State: z = {I}
T

— Continuous time: 2 = {0 1] z+ {0] u= Az + Bu
_ |Aa Ba| _
0 I

0 0 1
— Notice that E2= |0 0 0| and E® = 0 so FE is nilpotent
0 0 0

1 h —h?
— Using the series expansion: exp(Eh) = I + Eh + %E2h2 =10 1 2h
0 0 1
1 h Lpe
— Therefore Ag = { } ,Bq= [2 ]
0 1 h
L.
- Zg41 = [(1) ]11] Zk + 2:]%

* Notice that if we substitute the definition of z, we get the simple kinematic equations
1
Tk41 = T + hog + §h2uk, Vk41 = U + huy

* Assuming a zero-order hold, we can see that this is exact

Given some linear continuous system given by

z(t) = Ax(t) + Bu(t),x(0) = xq
y(t) = Cx(t) + Du(t)
we can discretize it to find discrete state matrices Ay and By so that the system can be equivalently

modelled discretely by:
Tp1 = Agzy + Bauy,

yYr = Cxp, + Duy,

which is an exact model with the assumption of a zero-order hold on the input. The matrices Agy, By
can be found by the matrix exponential

& e (5 o))

where h is the size of each discrete time step.
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