
Lecture 2, Sep 13, 2023
System Modeling (Continuous and Discrete Time)

Figure 1: Example 1: Modeling the wheel motion of a car.

Figure 2: Modeling the example as a simple mechanical system.

• Example 1: modeling the wheel motion of a car when it encounters a bump in the road
– Assumptions: constant velocity, 2D system model, variable step height ys(x)
– Begin with a simple mechanical system:

* kw is a spring representing the wheel; m is the mass of the wheel axle
* The spring-damper system kb and c model the shock absorber in the car
* In addition, we assume mb ≫ m, so that the car itself is approximately stationary and only

the wheel axle moves; we also assume the suspension is 1D and that the car is at rest in the
vertical direction before we hit the bump

– Now we can use Newton’s second law to form a mathematical model:
* mÿ =

∑
f = −cẏ − kby − kw(y − ys)

* mÿ + cẏ + (kb + kw)y = mÿ + cẏ + ky = kwy(s) = u(t)
• This is a second order, linear, nonhomogeneous, time-invariant system
• The initial conditions are y(0) = ẏ(0) = 0 and we wish to find y, ẏ, ÿ for t ≥ 0

* Now we need to represent it in a standard form

•
[
ẏ
ÿ

]
=

[ 0 1

− k

m
− c

m

] [
y
ẏ

]
+

[
0
1
m

]
u

• This is now in standard form: ẋ = Ax + bu, x(0) =
[
y(0)
ẏ(0

]
• This form corresponds to the following simulation block diagram:

Figure 3: Simulation block diagram of a standard linear system.

• Example 2: modelling how a drone reacts to given motor inputs
– Assumptions: horizontal motion is stabilized
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Figure 4: Simple mechanical system for Example 2.

– Applying Newton’s laws:
* mz̈ = −mg − cż + f
* We again have a second order, linear, nonhomogeneous, time-invariant system

– In standard form:
[
ż
z̈

]
=

[
0 1
0 − c

m

] [
z
ż

]
+

[
0
1
m

]
u

– But how do we actually perform the simulation?

Summary

In general for any linear system we have: a set of inputs u(t) (which we partially control); a set of
outputs y(t) which we can measure; and states x(t) that are internal to the system which we cannot
directly manipulate or measure.
To model a linear system in continuous time:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)

where A, B, C, D are state matrices.
To model a nonlinear system in continuous time:

ẋ(t) = f(x(t), u(t)), x(0) = x0

y(t) = h(x(t), u(t))

• If we have n states, m inputs and p outputs, then A is n × n, B is n × m, C is p × n and D is p × m
• In practice, we often need to represent things in discrete time, since the computers running simulations

are discrete
• To represent things in discrete time, we replace continuous signals with a sequence of regular samples

at tk = kh
– tk = kh is the sampling time
– fs = 1

h
is the sampling frequency

• So how do we convert our continuous model to a discrete one?
– Recall that the solution for ẋ(t) = Ax is x = eAtx0
– Over a short time interval tk ≤ t ≤ tk+1 the solution evolves as:

* x(t) = eA(t−tk)x(tk) +
� t

tk

eA(t−τ)Bu(τ) dτ

= eA(t−tk)x(tk) +
� t

tk

eA(t−τ)B dτu(tk)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)
• Note that we have assumed u(τ) = u(tk) (i.e. u stays constant over the timestep), which

is referred to as a zero-order hold
* x(tk+1) = Φ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk) = Adx(tk) + Bdu(tk)

• We have discretized the system
• We now have difference equations for the system (h is the sampling period):

– xk+1 = Adxk + Bduk
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– yk = Cxk + Duk

– Ad = Φ(tk+1, tk) = eAh

– Bd = Γ(tk+1, tk) =
� h

0
eAτ ′

dτ ′B

• To solve for Ad and Bd:
– Note that d

dt
Φ(t) = Φ(t)A and d

dt
Γ(t) = Φ(t)B

– Using this we have: d
dt

[
Φ(t) Γ(t)

0 I

]
=

[
Φ(t) Γ(t)

0 I

] [
A B
0 0

]
* Now we can use another matrix exponential to solve this

–
[
Ad Bd

0 I

]
= exp

([
A B
0 0

]
h

)
Note

The matrix exponential can be calculated with the Matlab function expm() or scipy function
scipy.linalg.expm(). We can also manually do a series expansion of the matrix exponential
function. Alternatively, c2d() in Matlab or control.matlab.c2d() can be used to do the same
conversion (which computes the matrix exponentials internally).

• We can now recursively apply the difference equations to propagate the state:
– x1 = Adx0 + Bdu0
– x2 = Ad(Adx0 + Bdu0) + Bdu1
– x3 = Ad(A2

dx0 + AdBdu0 + Bdu1) + Bdu2 and so on

– We can stack all these together:


x1
x2
...

xN

 = F


u0
u1
...

uN−1

 + F0x0

Definition

A system is reachable or controllable if and only if

rank
[
AN−1

d Bd AN−2
d Bd · · · Bd

]
= N

where N is the dimension of the state xk. Physically this means that there is a given sequence of
control inputs to reach any state.

Definition

A system is observable if and only if

rank


C

CAd

...
CAN−1

d

 = N

Physically this means that given some sequence of outputs, we can derive the system state.

• Example: consider the system: ẋ(t) = u(t), y(t) = x(t), x(0) = x0; find the difference equations assuming
a zero-order hold at the input and sampled output, with sampling period h

– Note that we have A = 0 and B = 1
– For tk ≤ t ≤ tk+1:
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* x(t) = x(tk) +
� t

tk

u(τ) dτ

= x(tk) +
� t

tk

1 dτu(tk)

= x(tk) + (t − tk)u(tk)
* Applying this at t = tk+1 = tk + h we get xk+1 = xk + huk

• Example: ẍ = u

– State: z =
[
x
ẋ

]
– Continuous time: ż =

[
0 1
0 0

]
z +

[
0
1

]
u = Az + Bu

–
[
Ad Bd

0 I

]
= exp

([
A B
0 0

]
h

)
= exp

0 1 0
0 0 1
0 0 0

 h

 = exp(Eh)

– Notice that E2 =

0 0 1
0 0 0
0 0 0

 and E3 = 0 so E is nilpotent

– Using the series expansion: exp(Eh) = I + Eh + 1
2E2h2 =

1 h
1
2h2

0 1 h
0 0 1


– Therefore Ad =

[
1 h
0 1

]
, Bd =

[1
2h2

h

]

– zk+1 =
[
1 h
0 1

]
zk +

[1
2h2

h

]
uk

* Notice that if we substitute the definition of z, we get the simple kinematic equations
xk+1 = xk + hvk + 1

2h2uk, vk+1 = vk + huk

* Assuming a zero-order hold, we can see that this is exact

Summary

Given some linear continuous system given by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)

we can discretize it to find discrete state matrices Ad and Bd so that the system can be equivalently
modelled discretely by:

xk+1 = Adxk + Bduk

yk = Cxk + Duk

which is an exact model with the assumption of a zero-order hold on the input. The matrices Ad, Bd

can be found by the matrix exponential[
Ad Bd

0 I

]
= exp

([
A B
0 0

]
h

)
where h is the size of each discrete time step.
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