Lecture 19, Nov 22, 2023

Bayesian Tracking

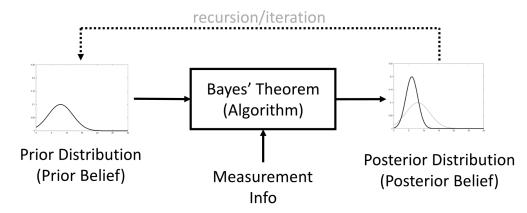


Figure 1: High-level overview of Bayesian localization.

- We wish to derive a recursive state estimation algorithm (i.e. iterating at each timestep) for a system with a finite state space, consisting of two main steps:
 - 1. The prior update, where the state estimate is predicted forward using the process model
 - 2. The *measurement update*, where the prior is combined with observation and measurements to correct it
- Let $x_k \in \mathcal{X}$ be the vector-valued state at time k (assumed discrete, i.e. \mathcal{X} is finite); let y_k be a vector-valued measurement that we can observe (continuous or discrete)
- We have a motion model $\boldsymbol{x}_k = \boldsymbol{f}_{k-1}(\boldsymbol{x}_{k-1}, \boldsymbol{v}_{k-1})$ and the observation model $\boldsymbol{y}_k = \boldsymbol{h}_k(\boldsymbol{x}_k, \boldsymbol{w}_k)$, where $\boldsymbol{v}_k, \boldsymbol{w}_k$ are independent noise terms with known PDFs; we also assume noise is independent of the initial condition \boldsymbol{x}_0
 - Note u_{k-1} is not explicitly included, but we can incorporate it by absorbing it into f_{k-1} and h_k
- Let $y_{1:k} = \{ y_1, \dots, y_k \}$; we want to calculate $f(x_k | y_{1:k})$, i.e. the probability distribution of the state at time k, given all our measurements
- Assuming the *Markov property* (i.e. each state only depends on the prior state, and not the state history), we can formulate the problem as computing $f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k})$ from $f(\boldsymbol{x}_{k-1}|\boldsymbol{y}_{1:k-1})$
- Prior update: compute $f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k-1})$ in terms of $f(\boldsymbol{x}_{k-1}|\boldsymbol{y}_{1:k-1})$
 - By total probability, $f(\boldsymbol{x}_k|y_{1:k-1}) = \sum_{\boldsymbol{x}_{k-1} \in \mathcal{X}} f(\boldsymbol{x}_k|\boldsymbol{x}_{k-1}, \boldsymbol{y}_{1:k-1}) f(\boldsymbol{x}_{k-1}|\boldsymbol{y}_{1:k-1})$
 - * i.e. we introduce \boldsymbol{x}_{k-1} and marginalize across it
 - x_k and $y_{1:k-1}$ are conditionally independent given x_{k-1} , because the distribution of x_{k-1} already incorporates the information from all previous measurements
 - * x_k is a function of v_{k-1} only (because x_{k-1} is known)
 - * \boldsymbol{y}_{k-1} is a function of \boldsymbol{w}_{k-1}
 - * y_{k-2} is a function of x_{k-2} and w_{k-2} , but x_{k-2} is a function of x_{k-3} and v_{k-3} , and so on
 - * Therefore $\boldsymbol{y}_{1:k-1}$ is a function of $\boldsymbol{x}_{k-1}, \boldsymbol{v}_{1:k-3}, \boldsymbol{w}_{1:k-1}, \boldsymbol{x}_{0}$
 - * x_k , and $y_{1:k-1}$ depend only on random variables that are independent, so these two variables must be independent
 - Therefore the prior update is $f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k-1}) = \sum_{\boldsymbol{x}_{k-1} \in \mathcal{X}} f(\boldsymbol{x}_k|\boldsymbol{x}_{k-1}) f(\boldsymbol{x}_{k-1}|\boldsymbol{y}_{1:k-1})$
 - * The distribution $f(\boldsymbol{x}_k|\boldsymbol{x}_{k-1})$ can be calculated exactly from our process model and noise distribution using change of variables
- Measurement update: compute $f(\boldsymbol{x}_k|y_{1:k-1})$, given \boldsymbol{y}_k and $f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k-1})$

- Using Bayes' rule, $f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k}) = f(\boldsymbol{x}_k|\boldsymbol{y}_k, \boldsymbol{y}_{1:k-1})$

$$+ \frac{f(\boldsymbol{y}_k | \boldsymbol{x}_k, \boldsymbol{y}_{1:k-1}) f(\boldsymbol{x}_k | \boldsymbol{y}_{1:k-1})}{f(\boldsymbol{x}_k | \boldsymbol{y}_{1:k-1})}$$

- Once again, y_k and $y_{1:k-1}$ are conditionally independent, given x_k
 - * \boldsymbol{y}_k is a function of only \boldsymbol{w}_k , if given \boldsymbol{x}_k
 - * Using a similar procedure we can show $y_{1:k-1}$ is a function of $v_{0:k-2}, w_{1:k-1}, x_0$, all of which are independent of w_k
 - * Therefore $\boldsymbol{y}_k, \boldsymbol{y}_{1:k-1}$ are conditionally independent on \boldsymbol{x}_k
 - * $f(\mathbf{y}_k|\mathbf{x}_k, \mathbf{y}_{1:k-1}) = f(\mathbf{y}_k|\mathbf{x}_k)$, and can be computed from our measurement model
- The term in the denominator is simply a normalization constant
 - * We can compute it as $f(\boldsymbol{y}_k|\boldsymbol{y}_{1:k-1}) = \sum_{\boldsymbol{x}_k \in \mathcal{X}} f(\boldsymbol{y}_k|\boldsymbol{x}_k) f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k-1})$ by total probability

- Therefore the measurement update is
$$f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k}) = \frac{f(\boldsymbol{y}_k|\boldsymbol{x}_k)f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k-1})}{\sum_{\boldsymbol{x}_k \in \mathcal{X}} f(\boldsymbol{y}_k|\boldsymbol{x}_k)f(\boldsymbol{x}_k|\boldsymbol{y}_{1:k-1})}$$

Implementation

- Enumerate the state as $\mathcal{X} = \{1, 2, \dots, N\}$
- Define $a_{k|k}^i = \Pr(x_k = i|y_{1:k-1}), i = 1, ..., N$ as an array of N elements in which we store the posterior - Initialize $a_{0|0}^i = \Pr(x_0 = i)$
- Define $a_{k|k-1}^i = \Pr(x_k = i | x_{1:k-1}), i = 1, \dots, N$ to store the prior
- Recursive update:

$$- \boldsymbol{a}_{k|k-1}^{i} = \sum_{j=1}^{N} \Pr(\boldsymbol{x}_{k} = i | \boldsymbol{x}_{k-1} = j) \boldsymbol{a}_{k-1|k-1}^{j}$$

$$* \Pr(\boldsymbol{x}_{k} = i | \boldsymbol{x}_{k-1} = j) \text{ can be calculated from } \boldsymbol{x}_{k} = \boldsymbol{f}_{k-1}(\boldsymbol{x}_{k-1}, \boldsymbol{v}_{k-1}) \text{ and the distribution of }$$

$$\boldsymbol{v}_{k}$$

$$f(\boldsymbol{y}_{k} | \boldsymbol{x}_{k} = i) \boldsymbol{a}_{k+1}^{i}$$

$$\boldsymbol{a}_{k|k}^{i} = \frac{\int (\boldsymbol{y}_{k}|\boldsymbol{x}_{k}=i)\boldsymbol{a}_{k|k-1}}{\sum_{j=1}^{N} f(\boldsymbol{y}_{k}|\boldsymbol{x}_{k}=j)\boldsymbol{a}_{k|k-1}^{j}}$$
* $f(\boldsymbol{y}_{k}|\boldsymbol{x}_{k}=i)$ can be calculated from $\boldsymbol{y}_{k} = \boldsymbol{h}_{k}(\boldsymbol{x}_{k}, \boldsymbol{w}_{k})$ and the distribution of \boldsymbol{w}_{k}

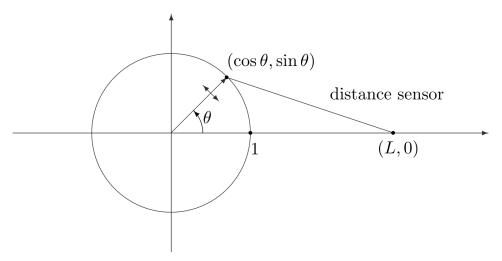


Figure 2: Setup for the example problem.

- Example: consider an object moving randomly on a circle, in discrete steps; our measurement is the distance to the object from a distance sensor located at (L, 0)
 - Let x_k be the object's location on the circle, then $\theta_k = \frac{2\pi x_k}{N}$
 - Set up the models:

- * The process model is $x_k = f(x_{k-1}, v_{k-1}) = (x_{k-1} + v_{k-1}) \mod N$ * The process noise is 1 with probability p, and -1 with probability 1 p

- * The measurement model is $y_k = h(x_k, w_k) = \sqrt{(L \cos \theta_k)^2 + \sin^2 \theta_k} + w_k$ * The measurement noise is uniformly distributed over [-e, e]- Using a change of variables we can now compute the PDFs of the process and sensor models

*
$$f(x_k|x_{k-1}) = \begin{cases} p & x_k = (x_{k-1}+1) \mod N \\ 1-p & x_k = (x_{k-1}-1) \mod N \\ 0 & \text{otherwise} \end{cases}$$

* $f(y_k|x_k) = \begin{cases} \frac{1}{2e} & \left| y_k - \sqrt{(L-\cos\theta_k)^2 + \sin\theta^2\theta_k} \right| \le e \\ 0 & \text{otherwise} \end{cases}$

- Initialize as $f(x_0) = \frac{1}{N} \forall x_0 \in \{0, 1, \dots, N-1\}$ which assumes a state of maximum ignorance