Lecture 18, Nov 17, 2023

Mean, Variance, and Change of Variables

Definition

The *expected value* of \boldsymbol{x} over a distribution $f_x(\boldsymbol{x})$ is defined as:

$$E[\boldsymbol{x}] = \sum_{\boldsymbol{x} \in \mathcal{X}} x f_x(\boldsymbol{x})$$

The sum is replaced by an integral for a continuous distribution.

The *variance* of \boldsymbol{x} is defined as

$$Var[\boldsymbol{x}] = E[(\boldsymbol{x} - E[\boldsymbol{x}])(\boldsymbol{x} - E[\boldsymbol{x}])^T]$$

- $E[\mathbf{x}]$ is also known as the *mean* and is generally a vector
- Var[x] is generally a matrix; called a *covariance* when a matrix
 - Diagonal entries are variances in each entry of x while the off-diagonal entries describe the correlation in the variances
 - If we look at a Gaussian, the spread looks like an ellipse; the eigenvalues describe the length of the axes of the ellipse, while the eigenvectors describe how it's aligned/skewed
- Mean and variance are first and second-order *moments* of \boldsymbol{x} ; we can also have higher order moments
- If $\mathcal{Y} = \{ y \mid y = g(x), x \in \mathcal{X} \}$, then E[y] = E[g(x)]; i.e. to find the mean of y we don't need to find its PDF, we just need to apply g to every element of \mathcal{X}
 - This is known as the Law of the Unconscious Statistician
- Let $f_y(y)$ be a discrete PDF; consider some x = g(y), then what is $f_x(x)$?
 - We assume that multiple y values can map to the same x (but the same y can't map to multiple x) - Let $\mathcal{X} = g(\mathcal{Y})$; for each $x_j \in \mathcal{X}$, let $\mathcal{Y}_j = \{y_{j,i}\}$ be the set of all $y \in \mathcal{Y}$ such that $g(y_{j,i}) = x_j$ (i.e. \mathcal{Y}_j contains all elements in \mathcal{Y} that map to x_j)
 - Claim: $f_x(x_j) = \sum_{y_{j,i}} f_y(y_{j,i})$, that is, to find the probability of x_j we just sum the probabilities of

all $y_{j,i}$ that map to it

$$f_x(x_j) = \Pr(x = x_j) = \Pr(y \in \mathcal{Y}_j) = \sum_{y_{j,i} \in \mathcal{Y}_j} f_y(y_{j,i})$$

* Assume $\mathcal{Y}_j \cap \mathcal{Y}_k = \emptyset$ when $j \neq k$, and $\mathcal{Y}_1 \cup \mathcal{Y}_2 \cup \cdots \cup \mathcal{Y}_n = \mathcal{Y}$ (this is true because the same \mathcal{Y} can't map to multiple \mathcal{X})

*
$$\sum_{x_j \in \mathcal{X}} f_x(x_j) = \sum_{x_j \in \mathcal{X}} \sum_{y_{j,i} \in \mathcal{Y}_j} f_y(y_{j,i}) = \sum_{j=1}^m \sum_{y_{j,i} \in \mathcal{Y}_j} f_y(y_{j,i}) = \sum_{y \in \mathcal{Y}} f_y(y) = 1$$

• For a continuous probability distribution, we assume g(y) is continuously differentiable and strictly monotonic (i.e. strictly increasing) and that $f_y(y)$ is continuous

- Claim:
$$f_x(x) = \frac{f_y(y)}{\frac{\mathrm{d}g(y)}{\mathrm{d}y}}$$

* $\Pr(y \in [\bar{y}, \bar{y} + \Delta y]) = \int_{\bar{y}}^{\bar{y} + \Delta y} f_y(y) \,\mathrm{d}y \approx f_y(\bar{y}) \Delta y$
* Let $\bar{x} = g(\bar{y})$ and $g(\bar{y} + \Delta y) = g(\bar{y}) + \frac{\mathrm{d}g(\bar{y})}{\mathrm{d}y} \Delta y = \bar{x} + \Delta x$
* $\Pr(x \in [\bar{x}, \bar{x} + \Delta x]) = \int_{\bar{x}}^{\bar{x} + \Delta x} f_x(x) \,\mathrm{d}x \approx f(\bar{x}) \Delta x$
* But we also have $\Pr(x \in [\bar{x}, \bar{x} + \Delta x]) = \Pr(y \in [\bar{y}, \bar{y} + \Delta y])$ because these are the same intervals

*
$$f_x(\bar{x})\Delta x = f_y(\bar{x})\Delta y \implies f_x(\bar{x})\frac{\mathrm{d}g(\bar{y})}{\mathrm{d}y}\Delta y = f_y(\bar{y})\Delta y \implies f_x(x) = \frac{f_y(y)}{\frac{\mathrm{d}g(y)}{\mathrm{d}y}}$$

- We can also think about this as a change of variables in the integral; we need $\int_{U} f_y(y) \, dy = 1$, and

since
$$x = g(y)$$
, $\frac{\mathrm{d}g(y)}{\mathrm{d}y} \mathrm{d}y \implies \mathrm{d}y = \frac{1}{\frac{\mathrm{d}g(y)}{\mathrm{d}y}} \mathrm{d}x$, then $\int_{\mathcal{X}} f_y(y) \frac{1}{\frac{\mathrm{d}g(y)}{\mathrm{d}y}} \mathrm{d}x = 1$, so the expression inside the integral must be the PDF of x

the integral must be the PDF of x

Bayes' Theorem in Practice

- We will use Bayes' Theorem to create a recursive filter; given a prior belief distribution and some measurement info, we use Bayes' Theorem to construct a new posterior belief/distribution
 - The measurement info itself is probabilistic since there may be errors
 - This can be done in a variety of ways, e.g. particle filters, Kalman filter
- $f(x|y) = \frac{f(y|x)f(x)}{f(y)}$
- - -x is some unknown quantity of interest, e.g. the system state
 - -y is some observation related to the state, e.g. sensor measurements
 - -f(x) is some prior belief
 - f(y|x) is the observation model; for each state x, what is the likelihood of observing y?
 - f(x|y) is the posterior belief, which takes the new observation into account
 - $-f(y) = \sum f(y|x)f(x)$ is the probability of observing y (independent of x); this can be seen as a
 - normalization constant since it's a constant multiplier as far as x is involved
- Given f(x|y), we can then find the "most likely" state; this is often defined as the mode or mean
- We can generalize to N observations y_1, \ldots, y_N , each of which may be vector-valued; assume conditional independence so that $f(y_1, \ldots, y_N | x) = f(y_1 | x) \cdots f(y_N | x)$
 - The conditional independence means that the noise corrupting each state x is independent
 - $-y_i = g_i(x, w_i)$ where w_i are noise; then we assume $f(w_1, \ldots, w_N) = f(w_1) \cdots f(w_N)$
- Then $f(x|y_1, \dots, y_N) = \frac{f(x)\prod_i f(y_i|x)}{f(y_i, \dots, y_N)} = \frac{f(x)\prod_i f(y_i|x)}{\sum_{x \in \mathcal{X}} f(x)\prod_i f(y_i|x)}$ Example: Let $x \in \{0, 1\}$ represent the truthful answer to a question (0 no, 1 yes); the response
- (i.e. observation) from person i modelled as $y_i = x + w_i$, where w_i is some independent noise (0 truth, 1 - lie
 - Note the + operator works like an XOR here
 - We ask 2 people the same question, and estimate what the truth is
 - The prior is $f(x) = \frac{1}{2}$ for both x = 0, 1 (i.e. we have no information and all states are equally likely)
 - We model the truthfulness as $f_{w_i}(0) = p_i, f_{w_i}(1) = 1 p_i$, i.e. person i tells the truth with probability p_i

- By Bayes' theorem
$$f(x|y_1, y_2) = \frac{f(x)f(y_1|x)f(y_2|x)}{f(y_1, y_2)}$$

- We build tables for the numerator and denominator to find the probabilities (see figure below) * Note terms in the table on the right are obtained by summing over all possible values of x; e.g. for $y_1 = 0, y_2 = 0$ we are taking the sum of $x = 0, y_1 = 0, y_2 = 0$ and $x = 1, y_1 = 0, y_2 = 0$ in the left table
- Note that all the information in the tables could have been obtained from just $f(x|y_1), f(x|y_2)$

x	y_1	y_2	$f(x) f(y_1 x) f(y_2 x)$
0	0	0	$0.5p_1p_2$
0	0	1	$0.5p_1(1-p_2)$
0	1	0	$0.5(1-p_1)p_2$
0	1	1	$0.5(1-p_1)(1-p_2)$
1	0	0	$0.5(1-p_1)(1-p_2)$
1	0	1	$0.5(1-p_1)p_2$
1	1	0	$0.5p_1(1-p_2)$
1	1	1	$0.5p_{1}p_{2}$
			1

y_1	y_2	$\int f(y_1,y_2)$
0	0	$0.5(p_1p_2 + (1 - p_1)(1 - p_2))$
0	1	$ \begin{array}{l} 0.5 \left(p_1 p_2 + (1 - p_1) \left(1 - p_2 \right) \right) \\ 0.5 \left(p_1 p_2 + (1 - p_1) \left(1 - p_2 \right) \right) \\ 0.5 \left(p_1 \left(1 - p_2 \right) + (1 - p_1) p_2 \right) \\ 0.5 \left((1 - p_1) p_2 + p_1 \left(1 - p_2 \right) \right) \\ 0.5 \left((1 - p_1) \left(1 - p_2 \right) + p_1 p_2 \right) \end{array} $
1	0	$0.5\left((1-p_1)p_2+p_1(1-p_2)\right)$
1	1	$0.5\left((1-p_1)\left(1-p_2\right)+p_1p_2\right)$

Figure 1: Probability tables for the example problem.