Lecture 18, Nov 17, 2023

Mean, Variance, and Change of Variables

The expected value of x over a distribution f,(x) is defined as:
zeX

The sum is replaced by an integral for a continuous distribution.

The variance of x is defined as

Var[z] = E[(x — E[z])(x — E[z])"]

o FElx] is also known as the mean and is generally a vector
o Var[z] is generally a matrix; called a covariance when a matrix
— Diagonal entries are variances in each entry of x while the off-diagonal entries describe the
correlation in the variances
— If we look at a Gaussian, the spread looks like an ellipse; the eigenvalues describe the length of the
axes of the ellipse, while the eigenvectors describe how it’s aligned /skewed
e Mean and variance are first and second-order moments of x; we can also have higher order moments
e Y ={yly=g(x),z € X}, then E[y] = E[g(z)]; i.e. to find the mean of y we don’t need to find its
PDF, we just need to apply g to every element of X’
— This is known as the Law of the Unconscious Statistician
o Let f,(y) be a discrete PDF; consider some = = ¢(y), then what is f,(x)?
— We assume that multiple y values can map to the same 2 (but the same y can’t map to multiple x)
— Let X = g()); for each z; € X, let Y; = {y;, } be the set of all y € Y such that g(y;;) = x;
(i.e. Y; contains all elements in Y that map to z;)
— Claim: fg(z;) Z fy(yj.i), that is, to find the probability of x; we just sum the probabilities of
Yii
all y; ; that map tjo it
* fo(zj) =Pr(z=z;) =Pr(y e Y;) = Z Fu(yie)
Y, i €Y
* Assume V; NV, = @ when j # k, and Yy U)o U---U Y, =) (this is true because the same
Y can’t map to multiple X))
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o For a continuous probability distribution, we assume g(y) is continuously differentiable and strictly
monotonic (i.e. strictly increasing or decreasing) and that f,(y) is continuous

— Claim: f,(z) = ‘Z”;g))
Tdy
+Ay
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* Let T = g(y) and g(y + Ay) —g(y)—i—dg—(y)Ay:ivLAx

T+Ax Y
* Pr(z € [z,2+ Az]) = /_ fo(x)de =~ f(Z)Az

* But we also have Pr(x Em[ii, Z+Az]) = Pr(y € [y, y+ Ayl) because these are the same intervals
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— We can also think about this as a change of variables in the integral; we need / fy(y)dy =1, and
Y

. _ dg(y) _ 1 1 . I
since x = ¢(y), “dy dy = dy = @ dx, then /X fy(y)@ dx = 1, so the expression inside
y Y

the integral must be the PDF of z

Bayes’ Theorem in Practice

e« We will use Bayes’ Theorem to create a recursive filter; given a prior belief distribution and some
measurement info, we use Bayes’ Theorem to construct a new posterior belief/distribution
— The measurement info itself is probabilistic since there may be errors
— This can be done in a variety of ways, e.g. particle filters, Kalman filter
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— x is some unknown quantity of interest, e.g. the system state

— y is some observation related to the state, e.g. sensor measurements

— f(z) is some prior belief

— f(y|z) is the observation model; for each state x, what is the likelihood of observing y?
— f(z|y) is the posterior belief, which takes the new observation into account

- fy)

y) = Z fly|x)f(x) is the probability of observing y (independent of x); this can be seen as a

normalizgtion constant since it’s a constant multiplier as far as x is involved
o Given f(z|y), we can then find the “most likely” state; this is often defined as the mode or mean
e We can generalize to IV observations y1, ..., yn, each of which may be vector-valued; assume conditional
independence so that f(y1,...,yn|x) = f(y1|x) - flyn]|2)
— The conditional independence means that the noise corrupting each state z is independent
— y; = gi(z,w;) where w; are noise; then we assume f(ws,...,wy) = f(w1)--- f(wy)
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o Example: Let « € { 0,1} represent the truthful answer to a question (0 — no, 1 — yes); the response
(i.e. observation) from person ¢ modelled as y; = x + w;, where w; is some independent noise (0 — truth,
1 - lie)
— Note the + operator works like an XOR here
— We ask 2 people the same question, and estimate what the truth is

— The prior is f(x) = 3 for both x = 0,1 (i.e. we have no information and all states are equally

likely)
— We model the truthfulness as fi,,(0) = p;, fu,; (1) = 1 — p;, i.e. person ¢ tells the truth with
probability p;
_ By Bayes’ theorem f(z|y1,ys) = f(@)f(ylz) f(yz|z)
f(yla 92)

— We build tables for the numerator and denominator to find the probabilities (see figure below)
* Note terms in the table on the right are obtained by summing over all possible values of x;
e.g. for y; = 0,92 = 0 we are taking the sum of x =0,y =0,yo =0and z =1,y =0,y =0
in the left table
— Note that all the information in the tables could have been obtained from just f(z|y1), f(z|y2)



fx) fylz) f(yalz)

v2 | flyiy)

H R R, OOOOR

R, oo Rk o oS

H O~ OoROoR oS

0.5p1p2

0.5p1(1 — p2)

0.5(1 — p1)p2
0.5(1 = p1)(1 — p2)
0.5(1 —p1)(1 — p2)

0-5(1 - Pl)p2
0.5p1(1 — p2)
0.59p1p2

- = o oS

0.5 (p1p2 + (1 —p1) (1 — p2))
0.5(p1 (1 —p2) + (1 —p1)p2)
0.5((1—p1)p2+p1(1—p2))
0.5(

0
1
0
1 (1 —=p1) (1= p2) + p1p2)

Figure 1: Probability tables for the example problem.
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