
Lecture 18, Nov 17, 2023
Mean, Variance, and Change of Variables

Definition

The expected value of x over a distribution fx(x) is defined as:

E[x] =
∑
x∈X

xfx(x)

The sum is replaced by an integral for a continuous distribution.

The variance of x is defined as

Var[x] = E[(x − E[x])(x − E[x])T ]

• E[x] is also known as the mean and is generally a vector
• Var[x] is generally a matrix; called a covariance when a matrix

– Diagonal entries are variances in each entry of x while the off-diagonal entries describe the
correlation in the variances

– If we look at a Gaussian, the spread looks like an ellipse; the eigenvalues describe the length of the
axes of the ellipse, while the eigenvectors describe how it’s aligned/skewed

• Mean and variance are first and second-order moments of x; we can also have higher order moments
• If Y = { y | y = g(x), x ∈ X }, then E[y] = E[g(x)]; i.e. to find the mean of y we don’t need to find its

PDF, we just need to apply g to every element of X
– This is known as the Law of the Unconscious Statistician

• Let fy(y) be a discrete PDF; consider some x = g(y), then what is fx(x)?
– We assume that multiple y values can map to the same x (but the same y can’t map to multiple x)
– Let X = g(Y); for each xj ∈ X , let Yj = { yj,i } be the set of all y ∈ Y such that g(yj,i) = xj

(i.e. Yj contains all elements in Y that map to xj)
– Claim: fx(xj) =

∑
yj,i

fy(yj,i), that is, to find the probability of xj we just sum the probabilities of

all yj,i that map to it
* fx(xj) = Pr(x = xj) = Pr(y ∈ Yj) =

∑
yj,i∈Yj

fy(yj,i)

* Assume Yj ∩ Yk = ∅ when j ̸= k, and Y1 ∪ Y2 ∪ · · · ∪ Yn = Y (this is true because the same
Y can’t map to multiple X )

*
∑

xj∈X
fx(xj) =

∑
xj∈X

∑
yj,i∈Yj

fy(yj,i) =
m∑

j=1

∑
yj,i∈Yj

fy(yj,i) =
∑
y∈Y

fy(y) = 1

• For a continuous probability distribution, we assume g(y) is continuously differentiable and strictly
monotonic (i.e. strictly increasing or decreasing) and that fy(y) is continuous

– Claim: fx(x) = fy(y)
dg(y)

dy

* Pr(y ∈ [ȳ, ȳ + ∆y]) =
� ȳ+∆y

ȳ

fy(y) dy ≈ fy(ȳ)∆y

* Let x̄ = g(ȳ) and g(ȳ + ∆y) = g(ȳ) + dg(ȳ)
dy

∆y = x̄ + ∆x

* Pr(x ∈ [x̄, x̄ + ∆x]) =
� x̄+∆x

x̄

fx(x) dx ≈ f(x̄)∆x

* But we also have Pr(x ∈ [x̄, x̄+∆x]) = Pr(y ∈ [ȳ, ȳ +∆y]) because these are the same intervals
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* fx(x̄)∆x = fy(x̄)∆y =⇒ fx(x̄)dg(ȳ)
dy

∆y = fy(ȳ)∆y =⇒ fx(x) = fy(y)
dg(y)

dy

– We can also think about this as a change of variables in the integral; we need
�

Y
fy(y) dy = 1, and

since x = g(y), dg(y)
dy

dy =⇒ dy = 1
dg(y)

dy

dx, then
�

X
fy(y) 1

dg(y)
dy

dx = 1, so the expression inside

the integral must be the PDF of x

Bayes’ Theorem in Practice
• We will use Bayes’ Theorem to create a recursive filter; given a prior belief distribution and some

measurement info, we use Bayes’ Theorem to construct a new posterior belief/distribution
– The measurement info itself is probabilistic since there may be errors
– This can be done in a variety of ways, e.g. particle filters, Kalman filter

• f(x|y) = f(y|x)f(x)
f(y)

– x is some unknown quantity of interest, e.g. the system state
– y is some observation related to the state, e.g. sensor measurements
– f(x) is some prior belief
– f(y|x) is the observation model; for each state x, what is the likelihood of observing y?
– f(x|y) is the posterior belief, which takes the new observation into account
– f(y) =

∑
x

f(y|x)f(x) is the probability of observing y (independent of x); this can be seen as a

normalization constant since it’s a constant multiplier as far as x is involved
• Given f(x|y), we can then find the “most likely” state; this is often defined as the mode or mean
• We can generalize to N observations y1, . . . , yN , each of which may be vector-valued; assume conditional

independence so that f(y1, . . . , yN |x) = f(y1|x) · · · f(yN |x)
– The conditional independence means that the noise corrupting each state x is independent
– yi = gi(x, wi) where wi are noise; then we assume f(w1, . . . , wN ) = f(w1) · · · f(wN )

• Then f(x|y1, . . . , yN ) = f(x)
∏

i f(yi|x)
f(yi, . . . , yN ) = f(x)

∏
i f(yi|x)∑

x∈X f(x)
∏

i f(yi|x)
• Example: Let x ∈ { 0, 1 } represent the truthful answer to a question (0 – no, 1 – yes); the response

(i.e. observation) from person i modelled as yi = x + wi, where wi is some independent noise (0 – truth,
1 – lie)

– Note the + operator works like an XOR here
– We ask 2 people the same question, and estimate what the truth is
– The prior is f(x) = 1

2 for both x = 0, 1 (i.e. we have no information and all states are equally
likely)

– We model the truthfulness as fwi
(0) = pi, fwi

(1) = 1 − pi, i.e. person i tells the truth with
probability pi

– By Bayes’ theorem f(x|y1, y2) = f(x)f(y1|x)f(y2|x)
f(y1, y2)

– We build tables for the numerator and denominator to find the probabilities (see figure below)
* Note terms in the table on the right are obtained by summing over all possible values of x;

e.g. for y1 = 0, y2 = 0 we are taking the sum of x = 0, y1 = 0, y2 = 0 and x = 1, y1 = 0, y2 = 0
in the left table

– Note that all the information in the tables could have been obtained from just f(x|y1), f(x|y2)
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Figure 1: Probability tables for the example problem.
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