Lecture 17, Nov 3, 2023

Properties of Conditional PDFs

- Conditional PDFs can be treated just like regular PDFs; the condition parameterizes the PDF - Marginalization: $f_{x|z}(x|z) = \sum_{y \in \mathcal{Y}} f_{xy|z}(x, y|z)$
 - Conditioning: $f_{x|yz}(x|y,z) = \frac{f_{xy|z}(x,y|z)}{f_{y|z}(y|z)}$

 - Notice that if we remove z we just get the regular marginalization and conditioning laws
- * The parameter z can be e.g. a mean or standard deviation for a normal distribution, etc • Note that everything to the left of the bar is a random variable and everything to the right is a fixed conditioning variable (the bar has lower "precedence" than the comma)

•
$$f_{xyz}(x,y,z) = f_{xy|z}(x,y|z)f_z(z) \implies f_{xz}(x,z) = \sum_{y \in \mathcal{Y}} f_{xyz}(x,y,z) = \sum_{y \in \mathcal{Y}} f_{x,y|z}(x,y|z)f_z(z) \implies f_{xyz}(x,z) = \sum_{y \in \mathcal{Y}} f_{xyz}(x,y,z) = \sum_{y \in \mathcal{Y}} f_{yyz}(x,y,z) = \sum_{y \in \mathcal{Y}} f$$

$$f_{x|z}(x|z) = \frac{f_{xz}(x,z)}{f_{z}(z)} = \sum_{y \in \mathcal{Y}} f_{x,y|z}(x,y|z)$$

- $f_{x|yz}(x|y,z) = \frac{f_{xyz}(x,y,z)}{f_{yz}(y,z)} = \frac{f_{xy|z}(x,y|z)f_z(z)}{f_{y|z}(y|z)f_z(z)} = \frac{f_{xy|z}(x,y|z)}{f_{y|z}(y|z)} \implies f_{xy|z}(x,y|z) = f_{x|yz}(x|y,z)f_{y|z}(y|z)$ $f_{x|yz}(x|y,z) \text{ is conditioned on both } y \text{ and } z; \text{ so we can think of the above as multiplying by a}$
 - distribution of y moves y to the left of the bar
 - Since both distributions are conditioned on z, the resulting distribution will also be conditioned on z
- Random variables x and y are *independent* if f(x|y) = f(x), i.e. knowing y does not give us additional information about x
 - -f(x,y) = f(x|y)f(y) = f(x)f(y) is an equivalent definition
 - This also implies that f(y|x) = f(y)
- Random variables x and y are conditionally independent on z if f(x|y,z) = f(x|z), i.e. knowing z makes x and y independent (y has no information on x if we already know z)
 - This is equivalent to f(x, y|z) = f(x|z)f(y|z) similar to above
- Independence greatly simplifies algorithms and allows us to decouple information and processes - Suppose $y_i = g_i(x, w_i)$ where y_i are measurements, x is the state and w_i are noise
 - $f(y_1, \dots, y_N | x) = \prod_{i=1}^N f(y_i | x)$ if we have independence, which greatly simplifies the problem

Bayes' Theorem

•
$$f(x|y)f(y) = f(y|x)f(x) \implies f(x|y) = \frac{f(y|x)f(x)}{f(y)}$$
 is Bayes' theorem (or rule)

- This applies to both continuous and discrete and mixed PDFs
- Example: disease diagnosis
 - Doctors were asked to estimate the probability that a woman with no symptoms between 40 and 50 years old with a positive mammogram actually has breast cancer
 - Given: 7% of mammograms give false positives, 10% of mammograms gives false negatives, actual incidence of breast cancer in this age group is 0.8%
 - Let x be whether the patient has cancer (0) or not (1), and let y be whether the test is negative (1) or positive (0)
 - We want $f_{x|y}(0,0)$, i.e. the patient has cancer given a positive test
 - The 7% false positives is $f_{y|x}(0|1)$, the 10% false negatives is $f_{y|x}(1|0)$, the 0.8% is $f_x(0)$

$$- f_{x|y}(0|0) = \frac{f_{y|x}(0|0)f_x(0)}{f_y(0)}$$

$$* f_{y|x}(1|0) = 0.10 \implies 1 - f_{y|x}(1|0) = f_{y|x}(0|0) = 0.90$$

$$* f_x(0) = 0.008 \implies 1 - f_x(0) = f_x(1) = 0.992$$

* $f_{y|x}(0|1) = 0.007 \implies f_{y|x}(0|1)f_x(1) + f_{y|x}(0|0)f_x(0) = f_y(0) = 0.07664$ - Using these numbers we get $f_{x|y}(0,0) = 9.4\%$

- Since the actual probability of cancer is very low, very few positives will be due to true positives • Example: girls named Lulu

- A family has two children; given that one is a girl, what is the probability that both are girls?
 - * Let x be 1 if there are no boys in the family and 0 if there are boys in the family
 - * Let y be 1 if there are no girls in the family and 0 if there are girls in the family
 - * $f_y(0) = \frac{3}{4}, f_y(1) = \frac{1}{4}$ because there are 4 cases, 3 of which have at least 1 girl * $f_y(0) = \frac{3}{4}, f_y(1) = \frac{1}{4}$ because there are 4 cases, 3 of which have at least 1 girl

*
$$f_x(1) = \frac{1}{4}, f_x(0) = \frac{1}{4}$$
 similarly

* $f_{y|x}(0|1) = 1$ since if there are no boys, there must be girls

* We want to know
$$f_{x|y}(1|0) = \frac{f_{y|x}(0|1)f_x(1)}{f_y(0)} = \frac{1}{3}$$

- If we are given that one of them is a girl named Lulu (given that this is an uncommon name), what is the probability that both are girls?

- * Let x be 1 if there are no boys in the family and 0 if there are boys in the family
- * Let y be 1 if there are no girls named Lulu in the family and 0 if there are

*
$$f_{x|y}(1|0) = \frac{f_{y|x}(0|1)f_x(1)}{f_x(0)}$$

- $f_y(0)$ $f_{y|x}(0|1)$ is the probability that given 2 girls, at least one is named Lulu – If $p \ll 1$ is the probability of a girl being named Lulu
 - We can enumerate all possible outcomes:
 - * Both children not named Lulu: (1-p)(1-p)
 - * First child not Lulu, second child Lulu: (1-p)p
 - * First child Lulu, second child not Lulu: p
 - * Both children named Lulu: 0
 - Therefore $f_{y|x}(0|1) = 2p p^2 \approx 2p$

•
$$f_y(0) = f_{y|x}(0|0)f_x(0) + f_{y|x}(0|1)f_x(1) = p - \frac{1}{4}p^2$$

 $-f_{y|x}(0|0)$ has at least one boy in the family, so the probability of having a girl is $\frac{2}{2}$ so

having a girl named Lulu is $\frac{2}{3}p$

$$-f_x(0) = \frac{3}{4}, f_x(1) = \frac{1}{4}$$

* This gives us $f_{x|y}(1|0) \approx \frac{1}{2}$