Lecture 16, Nov 1, 2023

Probability Review

- Example: a man has M pairs of pants and L shirts; over time we observe that out of N observations, $n_{ps}(i,j)$ is the number of times he wore pants i with shirt j, p is the number of pants he wore pants i, and $n_s(j)$ is the number of times he wore shirt j
 - Let $f_{ps}(i,j) = \frac{n_{ps}(i,j)}{N}$ be the likelihood of wearing pants *i* with shirt *j* - Let $f_p(i) = \frac{n_p(i)}{N}$, $f_s(i) = \frac{n_s(j)}{N}$ - Note that all the frequencies/likelihoods are nonnegative, and summing over all *i* or *j* gets us 1

$$- n_p(i) = \sum_{j=1}^{L} n_{ps}(i,j), n_s(j) = \sum_{i=1}^{M} n_{ps}(i,j)$$

- Therefore $f_p(i) = \sum_{j=1}^{L} f_{ps}(i,j), f_s(j) = \sum_{i=1}^{M} f_{ps}(i,j)$

- * This is known as *marginalization* or the sum rule
- There are two main ways of thinking about probability: *frequentist*, which examines the relative frequency of events occurring in a large number of trials; or *Bayesian*, which thinks about probability in terms of belief and uncertainty
- Let \mathcal{X} be the set of all possible outcomes; let $f_x(\cdot)$ be the probability density function (PDF), a real-valued function that is nonnegative and sums to 1
 - $-f_x(\cdot)$ and \mathcal{X} define a discrete random variable (DRV) x
 - The PDF defines the notion of probability: $\Pr(x = \bar{x}) = f_x(\bar{x})$
 - We typically use x to denote the variable and a value it can take, e.g. $Pr(x) = f_x(x)$; we will often also drop the subscript
- We can form a joint PDF $f_{xy}(x, y)$ over two variables

$$-f_{xy}(x,y) \ge 0$$
 as usua
 $-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} f_{xy}(x,y) = 1$

- Marginalization (sum rule): $f_x(x) = \sum_{y \in \mathcal{Y}} f_{xy}(x, y)$
 - * f_x is fully defined by f_{xy} ; consider this as a definition
- Conditioning (product rule): $f_{x|y}(x,y) = f(x|y) = \frac{f_{xy}(x,y)}{f_y(y)}$
 - * This is like taking a slice of the joint probability distribution, and normalizing so it becomes a proper distribution
 - * "Probability of y given x"
 - * f(x,y) = f(x|y)f(y) = f(y|x)f(x) is known as *Bayes' rule*

Theorem

Total probability theorem:

$$f_x(x) = \sum_{y \in \mathcal{Y}} f_{x|y}(x|y) f_y(y)$$

- Continuous random variables have a continuous range of values and must be integrated instead of summed
 - Note that we will assume $f_x(x)$ is uniformly bounded and piecewise continuous; this excludes things like delta functions and distributions that go to infinity
 - For a CRV it makes no sense to talk about the probability of x being exactly some value

- Instead we use intervals
$$\Pr(x \in [a, b]) = \int_a^b f_x(x) \, dx$$

All other properties for discrete random variables apply, with integrals instead of sumsWe can mix continuous and discrete random variables in a joint probability distribution