
Lecture 15, Oct 27, 2023
Interpretations of the SVD

• If A is a linear mapping, we can interpret the SVD as breaking up A into a rotation/projection V T , a
scaling Σ and reconstructing in the basis U

– The input vector x is projected into the orthonormal basis V T

– Each component gets scaled by a singular value
– The rescaled components are reconstructed into an output vector using the basis U
– Note that since the singular values are ordered, v1 is the “highest gain” input vector direction and

u2 is the “highest gain” output vector direction
• We can approximate A with a lower rank matrix Ã

– Ãl =
l∑

i=1
σiu1vT

i

– Since the singular values are in descending order, we’re basically keeping the “more important”
parts of the matrix

– This is linked to dimensionality reduction techniques

Figure 1: Geometric illustration of the SVD for n = m = 3, k = 2.

• Geometrically, consider how the SVD transforms a vector on the unit sphere:
– Let z = z1v1 + z2v2 + · · · + znvn for

∑
i

z2
i = zT z = 1

– Az = UΣV T z

= UΣV T (z = z1v1 + z2v2 + · · · + znvn)
= σ1z1u1 + · · · + σkzkuk

= w1u1 + w2u2 + · · · + wkuk

– Since
k∑

i=1

w2
i

σi

2

=
k∑

i=1
z2

i ≤
n∑

i=1
z2

i = 1 we have an ellipsoid in k dimensions

* If k = n (full rank), then we have an equality, so we get the surface of the ellipsoid (no
collapse)

* If k < n, we have the inequality so we get the solid interior of the ellipsoid (some dimensions
are collapsed)

– We can interpret the SVD as first collapsing the unit sphere by n − k dimensions, then stretching
the remaining k dimensions and then embedding the result in Rm

Applications of the SVD
• SVD has many applications, the most common of which are dimensionality reduction techniques – we

can throw away parts of the matrix that are less important
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Figure 2: Typical singular value spectrum of an image.

• Image compression: treat the image as a big matrix, take the SVD, and truncate the singular values
below a certain threshold

– In general with data matrices we don’t really have a clear “rank”, so we will see a “continuous”
spectrum of singular values – they decrease relatively smoothly instead of having a cutoff

– We can now store the singular values and singular vectors above a certain threshold instead of the
full image matrix

– SVD compression is good at picking up patterns that align with the axes of the image (since these
correspond to lower rank patterns)

* e.g. a checkerboard would be very efficient when compressed since it has an effective rank of
almost 1; but if we warp this checkerboard so that it is no longer axis-aligned, it becomes
worse

• Principal component analysis (PCA): given A as the covariance matrix for a large number of high
dimensional data points, we can use an SVD to get a lower dimensional subset that gives us more
insight

– The axes of the SVD are the axes of the error ellipsoid and the singular values are how large the
ellipsoid is along each axis

• Dynamic mode decomposition (DMD): finding the best linear operator that represents the nonlinear
dynamics of a system: ż = f(z) ↔ ẋ = Ax

– The system dynamics are often lifted into higher dimensional space where things become more
linear

– We get emergent dynamics from the system, e.g. the behaviour of vortices shed by an object
– DMD uses a large number of samples of the time series evolution of the dynamics in higher

dimensional space: { x(t0), x(t1), . . . , x(tN ) } = { x0, x1, . . . , xN }
* Each x is a stacked vector of all the data (state) of the system at a particular time sample

– Assume there is some matrix A such that xk+1 = Axk

* X ′ = AX where X ′ =
[
x1 · · · xN

]
, X =

[
x0 · · · xN−1

]
– Now we need to find A, but it can be very large, so we can approximate it with a smaller matrix

Ar using the SVD of the data matrix
* X = UΣV T =⇒ X ′ = AUΣV T

* Truncate the SVD to get the dominant modes: X ′ ≈ AUrΣrV T

* Therefore UT
r X ′VrΣ−1

r = UT
r AUr = Ar

– Now we have the transition matrix we can perform an eigendecomposition ArW = W Λ to look
at its modes

* Map the eigenspace back to the original space: Φ = X ′VrΣ−1
r W

* The eigenvalues corresponding these modes allow us to see how they evolve – whether they
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grow or shrink with time, oscillations, etc, just like a linear system
– This can also be used to predict the future steps of the dynamics

• Frame-to-frame visual odometry: finding the coordinate transformation that maps one point cloud to
another

– This can be performed using an SVD of the point cloud data
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