Lecture 14, Oct 25, 2023

Eigendecomposition

Definition

An eigenvector $x \neq 0$ of a square matrix $A \in \mathbb{R}^{n \times n}$ is any vector satisfying

 $Ax = \lambda x$

for some eigenvalue $\lambda \in \mathbb{C}$.

Definition

The *spectrum* of A is the set of all eigenvalues of A.

The spectral radius of \mathbf{A} is $\rho(\mathbf{A}) = \max|\lambda|$ overall eigenvalues λ of \mathbf{A} .

- Eigenvalues are connected to optimization; consider the optimization: $\min x^T A x$ subject to $\|x\|_2 = 1$
 - This is a quadratically constrained quadratic program (QCQP)
 - The Lagrangian is $\Lambda(\boldsymbol{x},\lambda) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \lambda(\boldsymbol{x}^T \boldsymbol{x} 1)$

 - From $\frac{\partial \Lambda}{\partial \boldsymbol{x}^T} = 0$ we get that $2\boldsymbol{A}\boldsymbol{x} 2\lambda\boldsymbol{x} = 0 \implies \boldsymbol{A}\boldsymbol{x} = \lambda\boldsymbol{x}$ Therefore the critical points are the unit eigenvectors of \boldsymbol{A} (unit due to the constraint)
- Important properties:
 - Eigenvectors corresponding to different eigenvalues are linearly independent
 - A is diagonalizable if its eigenvectors span \mathbb{R}^n , in which case $A = V\Lambda V^{-1} \iff \Lambda = V^{-1}AV$, which is called a *similarity transformation*
 - * If A is not diagonalizable, it is degenerate or has degenerate eigenvalues
 - * If V is orthogonal, we can interpret this as decomposing A into a pure rotation, a pure scaling, and then the inverse of the pure rotation
 - Spectral theorem: Symmetric matrices have n orthonormal eigenvectors with (possibly repeated) real eigenvalues
 - Positive definite matrices have all positive eigenvalues; positive semi-definite matrices have all nonnegative eigenvalues

Singular Value Decomposition

Definition

The singular value decomposition (SVD) of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$U^T A V = \Sigma \iff A = U \Sigma V^T$$

where $V \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{m \times m}$ are orthogonal matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix which contains the singular values of A.

Note that V contains the eigenvectors of $A^T A$ and U contains the eigenvectors of AA^T , while the $\sigma_i \in \mathbb{R}$ singular values on the diagonal of Σ are the square roots of the eigenvalues of $A^T A$.

- Note Σ has the same dimension as A
- $A^T A$, $A A^T$ are symmetric, so by the spectral theorem their eigenvalues are orthonormal; furthermore, $A^{T}A$ is positive semi-definite so eigenvalues are all nonnegative, thus the singular values are real

• Σ has the singular values $\sigma_1, \ldots, \sigma_m$ (assuming $m \leq n$) on its diagonal; note that it can be rectangular – We can split up Σ into a square diagonal matrix and a block of all zeroes

- In general $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1 & & \mathbf{0} \\ & \ddots & & \vdots \\ & & \sigma_k & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{bmatrix}$

- By convention the singular values are sorted such that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k \ge \sigma_{k+1} = \sigma_{k+2} = \cdots = 0$
- The first $k = \operatorname{rank} A$ singular values are nonzero (note k is also the number of strictly positive eigenvalues of $A^T A$)
- Note that $AV = U\Sigma \implies Av_j = \sigma_j u_j$; therefore we see that the SVD is a generalization of eigendecomposition for non-square A
 - - * \boldsymbol{v}_1 to \boldsymbol{v}_k are the normalized eigenvectors of $\boldsymbol{A}^T \boldsymbol{A}$
 - * \boldsymbol{v}_{k+1} to \boldsymbol{v}_n are taken from the null space of $\boldsymbol{A}^T \boldsymbol{A}$
 - * All \boldsymbol{v}_i are chosen such that \boldsymbol{V} is orthogonal
 - - * \boldsymbol{u}_1 to \boldsymbol{u}_k are the normalized eigenvectors of $\boldsymbol{A}\boldsymbol{A}^T$
 - * \boldsymbol{u}_{k+1} to \boldsymbol{u}_n are taken from the null space of $\boldsymbol{A}\boldsymbol{A}^T$

 - * All \boldsymbol{u}_j are chosen such that \boldsymbol{U} is orthogonal * This is because $\boldsymbol{A}\boldsymbol{A}^T = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T(\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{U}^T) = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^T\boldsymbol{U}^T = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^T$ which is just a diagonalization: ditto for V
- Example: find the SVD of $\begin{bmatrix} 1 & 0 \end{bmatrix}$

$$- \boldsymbol{A}^T \boldsymbol{A} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}$$

- * This has rank 1, giving eigenvalues $\lambda_1 = 1, \lambda_2 = 0$
- * We get the nonzero singular value $\sigma_1 = \sqrt{\lambda_1} = 1$
- * The unit eigenvector corresponding to λ_1 is $\begin{bmatrix} 1\\0 \end{bmatrix}$
- * To get the second vector in \boldsymbol{V} we take $\begin{bmatrix} 0\\1 \end{bmatrix}$, which is orthogonal to the first and is a zero eigenvector
- To find \boldsymbol{u}_j we can use $\boldsymbol{A}\boldsymbol{v}_j = \sigma_j \boldsymbol{u}_j$, giving $u_1 = 1$
- Therefore $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \boldsymbol{V} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \boldsymbol{U} = \begin{bmatrix} 1 \end{bmatrix}$
- Example: find the SVD of $\begin{bmatrix} 1\\0 \end{bmatrix}$
- $\mathbf{A}^{T}\mathbf{A} = 1 \text{ giving } \lambda_{1} = \stackrel{\mathsf{L}}{1} \implies \sigma_{1} = 1 \text{ and an eigenvector of } 1$ $\mathbf{A}\mathbf{v}_{j} = \sigma_{j}\mathbf{u}_{j} \implies \mathbf{u}_{1} = \begin{bmatrix} 1\\0 \end{bmatrix} 1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ * Choose $\boldsymbol{u}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ so that it is orthogonal to \boldsymbol{u}_1 and gives $\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{u}_2 = \boldsymbol{0}$ - Therefore $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1\\0 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}, \boldsymbol{V} = \begin{bmatrix} 1\\ \end{bmatrix}, \boldsymbol{U} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ - We could have found this using the previous example's result, since the matrix was just transposed • If $\boldsymbol{A}_1 = \boldsymbol{U}_1\boldsymbol{\Sigma}_1\boldsymbol{V}_1^T$ and $\boldsymbol{A}_1^T = \boldsymbol{A}_2 = \boldsymbol{U}_2\boldsymbol{\Sigma}_2\boldsymbol{V}_2^T$, then $\boldsymbol{V}_1 = \boldsymbol{U}_2, \boldsymbol{U}_1 = \boldsymbol{V}_2, \boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2^T$

- Consider the effect of A on length: examine the critical points of $\|Ax\|_2^2 = x^T A^T Ax$ (the Rayleigh quotient) subject to $\|\boldsymbol{x}\|_2 = 1$
 - From the example in the previous section we know that critical points are the unit eigenvectors of $A^T A$: $A^T A v_i = \lambda_i v_i$, where all eigenvalues are nonnegative and eigenvectors are orthonormal
 - Let $\tilde{\boldsymbol{u}}_i = \boldsymbol{A}\boldsymbol{v}_i$, then $\lambda_i \tilde{\boldsymbol{u}}_i = \lambda_i \boldsymbol{A}\boldsymbol{v}_i = \boldsymbol{A}(\lambda_i \boldsymbol{v}_i) = \boldsymbol{A}\boldsymbol{A}^T \boldsymbol{A}\boldsymbol{v}_i = \boldsymbol{A}\boldsymbol{A}^T \boldsymbol{\tilde{u}}_i$ so $\tilde{\boldsymbol{u}}_i$ is an eigenvector of AA^T with the same eigenvalue λ_i

*
$$\|\tilde{\boldsymbol{u}}_i\|_2 = \sqrt{\boldsymbol{v}_i^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{v}_i} = \sqrt{\lambda_i \boldsymbol{v}_i^T \boldsymbol{v}_i} = \sqrt{\lambda} \|\boldsymbol{v}_i\|_2 = \sqrt{\lambda}$$

* We can normalize to get $\boldsymbol{u}_i = rac{ ilde{\boldsymbol{u}}_i}{\lambda_i}$

- So we get two eigenproblems $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i, \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$ with all $\boldsymbol{v}_i, \boldsymbol{u}_1$ being orthonormal Now define $\boldsymbol{U}_1 = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_k \end{bmatrix}, \boldsymbol{V}_1 = \begin{bmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_k \end{bmatrix}$ and we can show that this leads us to the SVD
- $\boldsymbol{A} = \begin{bmatrix} \boldsymbol{U}_1 & \boldsymbol{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_1^T \\ \boldsymbol{V}_2^T \end{bmatrix}$ where \boldsymbol{U}_2 and \boldsymbol{V}_2 are chosen in the null spaces of $\boldsymbol{A}\boldsymbol{A}^T, \, \boldsymbol{A}^T\boldsymbol{A}$ to give

orthogonality

- Essentially, A takes everything from span { V_1 } and maps it to span { U_1 }; everything in span { V_2 } is mapped to zero, so everything in span $\{U_2\}$ are all the points that A cannot reach

1

- V_1, U_1 are unique, but V_2, U_2 can be chosen arbitrarily as long as orthogonality is maintained
- In practice, we rarely need to compute V_2, U_2

• The SVD allows us to write
$$\boldsymbol{A}$$
 using its modes: $\boldsymbol{A} = \sum_{i=1}^{n} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$

- Since the σ_i are sorted, the earlier terms in the summation are more "important"
- We can cut of this summation to get a version of A with some of the unimportant bits removed