Lecture 14, Oct 25, 2023

Eigendecomposition

An eigenvector & # 0 of a square matrix A € R™*" is any vector satisfying
Az = )\x
for some eigenvalue A € C.

The spectrum of A is the set of all eigenvalues of A.

The spectral radius of A is p(A) = max|A| overall eigenvalues A of A.

« Eigenvalues are connected to optimization; consider the optimization: min z? Az subject to |||y = 1
x

— This is a quadratically constrained quadratic program (QCQP)
— The Lagrangian is A(x,\) = 7 Az — Az — 1)
— From a(l—AT:Oweget that 2Ax — 2 x =0 = Ax = \z
— Therefore the critical points are the unit eigenvectors of A (unit due to the constraint)
e Important properties:
— Eigenvectors corresponding to different eigenvalues are linearly independent
— A is diagonalizable if its eigenvectors span R", in which case A = VAV ™! «—= A=V"1AV,
which is called a similarity transformation
* If A is not diagonalizable, it is degenerate or has degenerate eigenvalues
* If V is orthogonal, we can interpret this as decomposing A into a pure rotation, a pure scaling,
and then the inverse of the pure rotation
— Spectral theorem: Symmetric matrices have n orthonormal eigenvectors with (possibly repeated)
real eigenvalues
— Positive definite matrices have all positive eigenvalues; positive semi-definite matrices have all
nonnegative eigenvalues

Singular Value Decomposition

The singular value decomposition (SVD) of A € R™*" is
UTAV =% <— A=UxV"

where V € R™*" U € R™*™ are orthogonal matrices, and ¥ € R™*" is a rectangular diagonal
matrix which contains the singular values of A.

Note that V contains the eigenvectors of AT A and U contains the eigenvectors of AAT, while the
o; € R singular values on the diagonal of ¥ are the square roots of the eigenvalues of AT A.

e Note 3 has the same dimension as A
o« ATA, AAT are symmetric, so by the spectral theorem their eigenvalues are orthonormal; furthermore,
AT A is positive semi-definite so eigenvalues are all nonnegative, thus the singular values are real



o X has the singular values o1, ...,0,, (assuming m < n) on its diagonal; note that it can be rectangular
— We can split up X into a square diagonal matrix and a block of all zeroes

g1 0
— In general ¥ =
O 0
O --- 0 0
— By convention the singular values are sorted such that o1 > 092 > --- > 0 > 041 = 0py2=---=0

— The first k = rank A singular values are nonzero (note k is also the number of strictly positive
eigenvalues of AT A)
o Note that AV = UY = Awv; = oju;; therefore we see that the SVD is a generalization of
eigendecomposition for non-square A
~V=lv va o U Uk Ukz vy
* w1 to vy are the normalized eigenvectors of AT A
* wpi1 to v, are taken from the null space of ATA
* All v; are chosen such that V' is orthogonal
~U=[u1 uy - U Uky1 Upgz - Up)
* u, to uy, are the normalized eigenvectors of AAT
* wupy1 to u, are taken from the null space of AAT
* All w; are chosen such that U is orthogonal
* This is because AAT = USVT(VETUT) = UESSTU” = UAU? which is just a diagonal-
ization; ditto for V'
e Example: find the SVD of [1 O]
T 10
- A"A= 0 0
* This has rank 1, giving eigenvalues \; = 1, Ao =0
* We get the nonzero singular value o1 = /A; = 1

- . .1
* The unit eigenvector corresponding to A; is [0}

* To get the second vector in V' we take {(1)

], which is orthogonal to the first and is a zero
eigenvector
— To find u; we can use Av; = oju;, giving u; =1

1
— Therefore ¥ = [01 0} = [1 O} V= {0 (1)] U = [1]

1
0

— AT A =1 giving A\, =1 = o1 = 1 and an eigenvector of 1
1 1
fAvj:Ujuj:>u1: 01: 0

e Example: find the SVD of [

* Choose ug = so that it is orthogonal to u, and gives AATuy =0

0
i
g1 1 1 0
— Therefore 3 = {0} = [0} , V= [1] U = [0 1]
— We could have found this using the previous example’s result, since the matrix was just transposed
o If A =U Vi and AT = Ay = Uy, V' then Vi = Us, Uy = Vo, B = 27
« Consider the effect of A on length: examine the critical points of | Ax||3 = 7 AT Az (the Rayleigh
quotient) subject to ||x||2 =1
— From the example in the previous section we know that critical points are the unit eigenvectors of
AT A: AT Av; = \;v;, where all eigenvalues are nonnegative and eigenvectors are orthonormal
— Let @1; = Aw;, then \jit; = \jAv; = A(\v;) = AAT Av; = AAT40; so @, is an eigenvector of
AAT with the same eigenvalue \;

* a2 = \/v,-TATAvZ- - \/)\i'uiT'ui = V|vill2 = VA




E
by

7
— So we get two eigenproblems AT Av; = \;jv;, AATu; = \;u; with all v;, u; being orthonormal

* We can normalize to get u; =

— Now define U7 = [ul . uk] ,Vi= [1)1 'vk] and we can show that this leads us to the
SVD
> o] [vif ) T AT .
« A= [Ul Ug] o ol |vr where Uy and V4 are chosen in the null spaces of AA*, A* A to give
2

orthogonality

— Essentially, A takes everything from span { V; } and maps it to span { U }; everything in span { V5 }
is mapped to zero, so everything in span { Uy } are all the points that A cannot reach
— V1, U; are unique, but V5, Us can be chosen arbitrarily as long as orthogonality is maintained
— In practice, we rarely need to compute V5, U,
k
e The SVD allows us to write A using its modes: A = Z UiuiviT

i=1
— Since the o; are sorted, the earlier terms in the summation are more “important”
— We can cut of this summation to get a version of A with some of the unimportant bits removed
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