
Lecture 14, Oct 25, 2023
Eigendecomposition

Definition

An eigenvector x ̸= 0 of a square matrix A ∈ Rn×n is any vector satisfying

Ax = λx

for some eigenvalue λ ∈ C.

Definition

The spectrum of A is the set of all eigenvalues of A.

The spectral radius of A is ρ(A) = max|λ| overall eigenvalues λ of A.

• Eigenvalues are connected to optimization; consider the optimization: min
x

xT Ax subject to ∥x∥2 = 1
– This is a quadratically constrained quadratic program (QCQP)
– The Lagrangian is Λ(x, λ) = xT Ax − λ(xT x − 1)
– From ∂Λ

∂xT
= 0 we get that 2Ax − 2λx = 0 =⇒ Ax = λx

– Therefore the critical points are the unit eigenvectors of A (unit due to the constraint)
• Important properties:

– Eigenvectors corresponding to different eigenvalues are linearly independent
– A is diagonalizable if its eigenvectors span Rn, in which case A = V ΛV −1 ⇐⇒ Λ = V −1AV ,

which is called a similarity transformation
* If A is not diagonalizable, it is degenerate or has degenerate eigenvalues
* If V is orthogonal, we can interpret this as decomposing A into a pure rotation, a pure scaling,

and then the inverse of the pure rotation
– Spectral theorem: Symmetric matrices have n orthonormal eigenvectors with (possibly repeated)

real eigenvalues
– Positive definite matrices have all positive eigenvalues; positive semi-definite matrices have all

nonnegative eigenvalues

Singular Value Decomposition

Definition

The singular value decomposition (SVD) of A ∈ Rm×n is

UT AV = Σ ⇐⇒ A = UΣV T

where V ∈ Rn×n, U ∈ Rm×m are orthogonal matrices, and Σ ∈ Rm×n is a rectangular diagonal
matrix which contains the singular values of A.

Note that V contains the eigenvectors of AT A and U contains the eigenvectors of AAT , while the
σi ∈ R singular values on the diagonal of Σ are the square roots of the eigenvalues of AT A.

• Note Σ has the same dimension as A
• AT A, AAT are symmetric, so by the spectral theorem their eigenvalues are orthonormal; furthermore,

AT A is positive semi-definite so eigenvalues are all nonnegative, thus the singular values are real
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• Σ has the singular values σ1, . . . , σm (assuming m ≤ n) on its diagonal; note that it can be rectangular
– We can split up Σ into a square diagonal matrix and a block of all zeroes

– In general Σ =


σ1

. . .
σk

0
...
0

0 · · · 0 0


– By convention the singular values are sorted such that σ1 ≥ σ2 ≥ · · · ≥ σk ≥ σk+1 = σk+2 = · · · = 0
– The first k = rank A singular values are nonzero (note k is also the number of strictly positive

eigenvalues of AT A)
• Note that AV = UΣ =⇒ Avj = σjuj ; therefore we see that the SVD is a generalization of

eigendecomposition for non-square A
– V =

[
v1 v2 · · · vk vk+1 vk+2 · · · vn

]
* v1 to vk are the normalized eigenvectors of AT A
* vk+1 to vn are taken from the null space of AT A
* All vj are chosen such that V is orthogonal

– U =
[
u1 u2 · · · uk uk+1 uk+2 · · · un

]
* u1 to uk are the normalized eigenvectors of AAT

* uk+1 to un are taken from the null space of AAT

* All uj are chosen such that U is orthogonal
* This is because AAT = UΣV T (V ΣT UT ) = UΣΣT UT = UΛUT which is just a diagonal-

ization; ditto for V
• Example: find the SVD of

[
1 0

]
– AT A =

[
1 0
0 0

]
* This has rank 1, giving eigenvalues λ1 = 1, λ2 = 0
* We get the nonzero singular value σ1 =

√
λ1 = 1

* The unit eigenvector corresponding to λ1 is
[
1
0

]
* To get the second vector in V we take

[
0
1

]
, which is orthogonal to the first and is a zero

eigenvector
– To find uj we can use Avj = σjuj , giving u1 = 1

– Therefore Σ =
[
σ1 0

]
=

[
1 0

]
, V =

[
1 0
0 1

]
, U =

[
1
]

• Example: find the SVD of
[
1
0

]
– AT A = 1 giving λ1 = 1 =⇒ σ1 = 1 and an eigenvector of 1
– Avj = σjuj =⇒ u1 =

[
1
0

]
1 =

[
1
0

]
* Choose u2 =

[
0
1

]
so that it is orthogonal to u1 and gives AAT u2 = 0

– Therefore Σ =
[
σ1
0

]
=

[
1
0

]
, V =

[
1
]

, U =
[
1 0
0 1

]
– We could have found this using the previous example’s result, since the matrix was just transposed

• If A1 = U1Σ1V T
1 and AT

1 = A2 = U2Σ2V T
2 , then V1 = U2, U1 = V2, Σ1 = ΣT

2
• Consider the effect of A on length: examine the critical points of ∥Ax∥2

2 = xT AT Ax (the Rayleigh
quotient) subject to ∥x∥2 = 1

– From the example in the previous section we know that critical points are the unit eigenvectors of
AT A: AT Avi = λivi, where all eigenvalues are nonnegative and eigenvectors are orthonormal

– Let ũi = Avi, then λiũi = λiAvi = A(λivi) = AAT Avi = AAT ũi so ũi is an eigenvector of
AAT with the same eigenvalue λi

* ∥ũi∥2 =
√

vT
i AT Avi =

√
λivT

i vi =
√

λ∥vi∥2 =
√

λ
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* We can normalize to get ui = ũi

λi

– So we get two eigenproblems AT Avi = λivi, AAT ui = λiui with all vi, u1 being orthonormal
– Now define U1 =

[
u1 · · · uk

]
, V1 =

[
v1 · · · vk

]
and we can show that this leads us to the

SVD
• A =

[
U1 U2

] [
Σ11 0
0 0

] [
V T

1
V T

2

]
where U2 and V2 are chosen in the null spaces of AAT , AT A to give

orthogonality
– Essentially, A takes everything from span { V1 } and maps it to span { U1 }; everything in span { V2 }

is mapped to zero, so everything in span { U2 } are all the points that A cannot reach
– V1, U1 are unique, but V2, U2 can be chosen arbitrarily as long as orthogonality is maintained
– In practice, we rarely need to compute V2, U2

• The SVD allows us to write A using its modes: A =
k∑

i=1
σiuiv

T
i

– Since the σi are sorted, the earlier terms in the summation are more “important”
– We can cut of this summation to get a version of A with some of the unimportant bits removed
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