
Lecture 13, Oct 20, 2023
Additional Linear Algebra Topics
Positive Definiteness

Definition

A matrix B ∈ Rn×n is positive semidefinite if

∀x ∈ Rn, xT Bx ≥ 0

B is positive definite if
∀x ∈ Rn, x ̸= 0 =⇒ xT Bx > 0

• xT Bx is referred to as the quadratic form, which is the matrix version of x2

• For any A ∈ Rn×n, AT A is positive semi-definite; AT A is positive definite if and only if A is full rank
– xT (AT A)x = (Ax)T (Ax) = |Ax|22 ≥ 0
– If A has linearly independent columns, then Ax = 0 =⇒ x = 0, so xT (AT A)x = (Ax)T (Ax) =

0 only when x = 0; this goes both ways
• The eigenvalues of a positive semi-definite matrix are always greater than or equal to zero; for positive

definite matrices all eigenvalues are strictly positive
• Positive definite matrices come up often as inertia matrices or covariance matrices

Orthogonality

Definition

A set of vectors { v1, v2, . . . , vn } is orthonormal if and only if

vi · vj =
{

1 i = j

0 i ̸= j

That is, each vector has norm 1 and is orthogonal to every other vector.

A square matrix whose columns are orthonormal is called an orthogonal matrix.

• Let Q be orthogonal, then:
– QT Q = 1, and so QT = Q−1

– Applying Q has a linear transformation will not affect the length of a vector or the angle between
two vectors; this means Q is an isometry

* ∥Qx∥2
2 = xT QT Qx = xT x = ∥x∥2

2
* (Qx) · (Qy) = xT QT Qy = xT y = x · y

• An orthogonal matrix can rotate vectors but not scale them; all rotation matrices are orthogonal

Solving Linear Systems

• Solving systems in the form of Ax = b is a common problem
• However solving by A−1b is almost never a good idea since A−1 can be expensive to compute, reduces

solution accuracy, and is less efficient since a sparse A will have a dense A−1

• Gaussian elimination works for any A and b, but we can only achieve O(n3) for A ∈ Rn×n; to get
better performance, we can exploit the structure of a matrix (e.g. sparse/dense, triangular, Hermitian,
etc)

– Simplest case: A diagonal, which we can solve in O(n)
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– If A is upper or lower triangular, we can solve in O(n2); we can use each row to solve for exactly
a single element of x

– For a sparse matrix, if we can split it up into blocks, we can solve for each block individually
• Gaussian elimination is equivalent to first factorizing Ax = LUx = b and then solving Ly = b, Ux = y,

where L is lower triangular and U is upper triangular
– If we want to reuse A with different values of b, we can prefactorize A and reuse the factors to

save time
• In practice, use x = np.linalg.solve(A, b) in Python or x = A \ b in MATLAB

• Example: solve
[
1 2
2 5

] [
x1
x2

]
=

[
1
1

]
– We could do this by Gaussian elimination:

*
[
1 2 1
2 5 1

]
→

[
1 2 1
0 1 −1

]
→

[
1 2
0 1

] [
x1
x2

]
=

[
1

−1

]
* x2 = −1 =⇒ x1 = 3

– Note the first row operation was
(

I − 2
[
0 0
1 0

])
A =

[
1 2
0 1

]
*

[
1 0

−2 1

] [
1 2
2 5

]
=

[
1 2
0 1

]
* Notice the matrix multiplying A is lower triangular and the result is upper triangular; now

we can invert the first matrix to get a form of A = LU , since the inverse of a lower triangular
matrix is also lower triangular

– LU factorization:
*

[
1 0
2 1

] [
1 2
0 1

] [
x1
x2

]
=

[
b1
b2

]

* Solve first


1
0
2
1

 [
y1
y2

]
=

[
1 1

=⇒ y

]
1

= 1, y2 = −1

* Now we can solve
[
1 2
0 1

] [
x1
x2

]
= y =

[
1

−1

]
, which gives us the same result

Matrix and Vector Norms

Definition

A general vector norm is any function ∥·∥ : Rn 7→ [0, ∞) which satisfies the following conditions:
1. ∥x∥ = 0 ⇐⇒ x = 0
2. ∀c ∈ R, x ∈ Rn, ∥cx∥ = |c|∥x∥
3. ∀x, y ∈ Rn, ∥x + y∥ ≤ ∥x∥ + ∥y∥

• ∥x∥ ≥ 0 follows from these conditions
• As with the Euclidean norm, norms encode some notion of “length”
• Typical vector norms:

– The p-norm for p ≥ 1 is defined as ∥x∥p = (|x1|p + |x2|p + · · · + |xn|p)
1
p

* The 2-norm, or Euclidean norm, is an example of a p-norm
* If we constrain ∥x∥p = 1, we get boxes of various shapes; e.g. a 1-norm is a rotated square

in 2D, 2-norm is a circle in 2D, and infinity norm is a square in 2D; all other norms are
somewhere in between

– The ∞-norm (infinity norm) is defined as ∥x∥∞ = max(|x1|, |x2|, . . . , |xn|)
• All p-norms for p ≥ 1 (including the ∞-norm) are convex
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Definition

The matrix norm on Rm×n induced by a vector norm ∥·∥ is given by

∥A∥ = max { ∥Ax∥ | ∥x∥ = 1 }

Or equivalently
∥A∥ = max

x∈Rn,x ̸=0

∥Ax∥
∥x∥

• The induced vector norm is essentially the maximum norm of a unit vector after multiplying by A
• This makes the property that ∥Ax∥ ≤ ∥A∥∥x∥
• Typical matrix norms:

– 1-norm: ∥A∥1 = max
i≤j≤n

m∑
i=1

|aij |

* This is equivalent to the maximum column sum
– 2-norm: ∥A∥2 = max

{ √
λ

∣∣∣ ∃x ∈ Rn s.t. AT Ax = λx
}

* This is the square root of the largest eigenvalue of AT A (intuitively we can interpret this as
the largest eigenvalue of A)

* Sometimes called the spectral radius of A

– Frobenius norm: ∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

tr AT A

* ∥A∥2 ≤ ∥A∥F always holds

– ∞-norm (infinity norm): ∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |

* This is the maximum row sum
* Proof:

• ∥A∥∞ = max { ∥Ax∥∞ | ∥x∥∞ = 1 }

• Note [Ax]i =
∑

j

aijxj , so ∥Ax∥∞ = max
i

∣∣∣∣∣∣
∑

j

aijxj

∣∣∣∣∣∣ ≤ max
i

∑
j

|aij ||xj | ≤

max
i

∑
j

|aij |xmax = max
i

∑
j

|aij |∥x∥∞ = max
i

∑
j

|aij |

• We can show the bound the other way by selecting xj in a special way (see posted notes)

Condition Number

Definition

The condition number of A ∈ Rn×n with respect to a given norm ∥·∥ is

cond A = ∥A∥∥A−1∥

if A is non-invertible, cond A = ∞ by definition.

• Recall that conditioning describes how a small error in the input propagates to an error in the output
• For a matrix, we ask the question: for finding x such that Ax = b, how does the solution x change if

we make a small change to the matrices A and b?
– We can derive the relative condition number to be |ε|∥A∥∥A−1∥, where ε is some input error

• e.g. if we used the 2-norm, we would essentially get the ratio between the largest eigenvalue and the
smallest eigenvalue; intuitively if these two eigenvalues are different, we will see more error since the
system is stiff
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