Lecture 13, Oct 20, 2023

Additional Linear Algebra Topics

Positive Definiteness

Definition

A matrix $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ is positive semidefinite if

$$\forall \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{x}^T \boldsymbol{B} \boldsymbol{x} \ge 0$$

 \boldsymbol{B} is positive definite if

 $\forall \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{x} \neq \boldsymbol{0} \implies \boldsymbol{x}^T \boldsymbol{B} \boldsymbol{x} > 0$

- $x^T B x$ is referred to as the quadratic form, which is the matrix version of x^2
- For any $A \in \mathbb{R}^{n \times n}$, $A^T A$ is positive semi-definite; $A^T A$ is positive definite if and only if A is full rank $- x^T (A^T A) x = (A x)^T (A x) = |A x|_2^2 \ge 0$
 - If A has linearly independent columns, then $Ax = 0 \implies x = 0$, so $x^T (A^T A) x = (Ax)^T (Ax) = 0$ only when x = 0; this goes both ways
- The eigenvalues of a positive semi-definite matrix are always greater than or equal to zero; for positive definite matrices all eigenvalues are strictly positive
- Positive definite matrices come up often as inertia matrices or covariance matrices

Orthogonality

Definition

A set of vectors $\{v_1, v_2, \dots, v_n\}$ is *orthonormal* if and only if

$$oldsymbol{v}_i \cdot oldsymbol{v}_j = egin{cases} 1 & i=j \ 0 & i
eq j \end{cases}$$

That is, each vector has norm 1 and is orthogonal to every other vector.

A square matrix whose columns are orthonormal is called an *orthogonal* matrix.

- Let Q be orthogonal, then:
 - $\boldsymbol{Q}^T \boldsymbol{Q} = \boldsymbol{1}$, and so $\boldsymbol{Q}^T = \boldsymbol{Q}^{-1}$
 - Applying Q has a linear transformation will not affect the length of a vector or the angle between two vectors; this means Q is an *isometry*
 - * $\|Qx\|_2^2 = x^T Q^T Qx = x^T x = \|x\|_2^2$

*
$$(\mathbf{Q}\mathbf{x}) \cdot (\mathbf{Q}\mathbf{y}) = \mathbf{x}^T \mathbf{Q}^T \mathbf{Q}\mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$$

• An orthogonal matrix can rotate vectors but not scale them; all rotation matrices are orthogonal

Solving Linear Systems

- Solving systems in the form of Ax = b is a common problem
- However solving by $A^{-1}b$ is almost never a good idea since A^{-1} can be expensive to compute, reduces solution accuracy, and is less efficient since a sparse A will have a dense A^{-1}
- Gaussian elimination works for any A and b, but we can only achieve $O(n^3)$ for $A \in \mathbb{R}^{n \times n}$; to get better performance, we can exploit the structure of a matrix (e.g. sparse/dense, triangular, Hermitian, etc)
 - Simplest case: **A** diagonal, which we can solve in O(n)

- If A is upper or lower triangular, we can solve in $O(n^2)$; we can use each row to solve for exactly a single element of \boldsymbol{x}
- For a sparse matrix, if we can split it up into blocks, we can solve for each block individually
- Gaussian elimination is equivalent to first factorizing Ax = LUx = b and then solving Ly = b, Ux = y, where L is lower triangular and U is upper triangular
 - If we want to reuse A with different values of b, we can prefactorize A and reuse the factors to save time
- In practice, use x = np.linalg.solve(A, b) in Python or $x = A \setminus b$ in MATLAB
- Example: solve $\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ We could do this by Gaussian elimination:

$$* \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$* x_2 = -1 \implies x_1 = 3$$

- Note the first row operation was $\begin{pmatrix} I - 2 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

- $* \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
- * Notice the matrix multiplying A is lower triangular and the result is upper triangular; now we can invert the first matrix to get a form of A = LU, since the inverse of a lower triangular matrix is also lower triangular
- LU factorization:

*
$$\begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} b_1\\ b_2 \end{bmatrix}$$

* Solve first $\begin{bmatrix} 1\\ 0\\ 2\\ 1 \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ \Longrightarrow & y \end{bmatrix}_1 = 1, y_2 = -1$
* Now we can solve $\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \mathbf{y} = \begin{bmatrix} 1\\ -1 \end{bmatrix}$, which gives us the same result

Matrix and Vector Norms

Definition

- A general vector norm is any function $\|\cdot\| : \mathbb{R}^n \mapsto [0,\infty)$ which satisfies the following conditions:
 - 1. $\|\boldsymbol{x}\| = 0 \iff \boldsymbol{x} = \boldsymbol{0}$
 - 2. $\forall c \in \mathbb{R}, x \in \mathbb{R}^n, \|cx\| = |c| \|x\|$
 - 3. $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n, \|\boldsymbol{x} + \boldsymbol{y}\| \leq \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$
- $\|\boldsymbol{x}\| \geq 0$ follows from these conditions
- As with the Euclidean norm, norms encode some notion of "length"
- Typical vector norms:
 - The p-norm for $p \ge 1$ is defined as $\|\boldsymbol{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$
 - * The 2-norm, or Euclidean norm, is an example of a p-norm
 - * If we constrain $\|x\|_{p} = 1$, we get boxes of various shapes; e.g. a 1-norm is a rotated square in 2D, 2-norm is a circle in 2D, and infinity norm is a square in 2D; all other norms are somewhere in between

- The ∞ -norm (infinity norm) is defined as $\|\boldsymbol{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$

• All *p*-norms for $p \ge 1$ (including the ∞ -norm) are convex

Definition

The matrix norm on $\mathbb{R}^{m \times n}$ induced by a vector norm $\|\cdot\|$ is given by

$$\|A\| = \max\{ \|Ax\| \mid \|x\| = 1 \}$$

Or equivalently

$$\|\boldsymbol{A}\| = \max_{\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{x} \neq 0} \frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|}$$

• The induced vector norm is essentially the maximum norm of a unit vector after multiplying by \boldsymbol{A}

n

- This makes the property that $\|Ax\| \le \|A\| \|x\|$
- Typical matrix norms:

- 1-norm: $\|\boldsymbol{A}\|_1 = \max_{i \leq j \leq n} \sum_{i=1}^{n} |a_{ij}|$ * This is equivalent to the maximum column sum - 2-norm: $\|\boldsymbol{A}\|_2 = \max\left\{\sqrt{\lambda} \mid \exists \boldsymbol{x} \in \mathbb{R}^n \text{ s.t. } \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \lambda \boldsymbol{x}\right\}$ * This is the square root of the largest eigenvalue of $\boldsymbol{A}^T \boldsymbol{A}$ (intuit

- * This is the square root of the largest eigenvalue of $A^T A$ (intuitively we can interpret this as the largest eigenvalue of A)
- * Sometimes called the *spectral radius* of A

- Frobenius norm:
$$\|\boldsymbol{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\operatorname{tr} \boldsymbol{A}^T \boldsymbol{A}}$$

* $\|\boldsymbol{A}\|_2 \leq \|\boldsymbol{A}\|_F$ always holds

$$\|\mathbf{A}\|_{2} \geq \|\mathbf{A}\|_{F}$$
 always holds

-
$$\infty$$
-norm (infinity norm): $\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|$

- * This is the maximum row sum
- * Proof:

•
$$\|A\|_{\infty} = \max\{\|Ax\|_{\infty} \mid \|x\|_{\infty} = 1\}$$

• Note
$$[\mathbf{A}\mathbf{x}]_i = \sum_j a_{ij}x_j$$
, so $\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_i \left|\sum_j a_{ij}x_j\right| \leq \max_i \sum_j |a_{ij}||x_j| \leq \max_i \sum_j |a_{ij}| x_{max} = \max_i \sum_j |a_{ij}| \|\mathbf{x}\|_{\infty} = \max_i \sum_j |a_{ij}|$

• We can show the bound the other way by selecting x_j in a special way (see posted notes)

Condition Number

Definition

The condition number of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with respect to a given norm $\|\cdot\|$ is

cond
$$A = ||A|| ||A^{-1}||$$

if A is non-invertible, cond $A = \infty$ by definition.

- Recall that conditioning describes how a small error in the input propagates to an error in the output
- For a matrix, we ask the question: for finding x such that Ax = b, how does the solution x change if we make a small change to the matrices A and b?
 - We can derive the relative condition number to be $|\varepsilon| \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$, where ε is some input error
- e.g. if we used the 2-norm, we would essentially get the ratio between the largest eigenvalue and the smallest eigenvalue; intuitively if these two eigenvalues are different, we will see more error since the system is stiff