Lecture 13, Oct 20, 2023

Additional Linear Algebra Topics

Positive Definiteness

A matrix B € R™*" is positive semidefinite if
Ve e R T Bx > 0

B is positive definite if
Ve eR",z #0 — x'Bx >0

o T Bz is referred to as the quadratic form, which is the matrix version of 2>
e Forany A € R™*" AT A is positive semi-definite; AT A is positive definite if and only if A is full rank
- 2P (AT A)x = (Az)" (Azx) = |Ax|3 >0
— If A has linearly independent columns, then Az =0 = x =0, so 2’ (AT A)x = (Az)T (Az) =
0 only when x = 0; this goes both ways
e The eigenvalues of a positive semi-definite matrix are always greater than or equal to zero; for positive
definite matrices all eigenvalues are strictly positive
Positive definite matrices come up often as inertia matrices or covariance matrices

Orthogonality
A set of vectors { vy, va,...,v, } is orthonormal if and only if

w1
S0 i

That is, each vector has norm 1 and is orthogonal to every other vector.

A square matrix whose columns are orthonormal is called an orthogonal matrix.

o Let Q be orthogonal, then:
- QTQ=1,andso QT =Q!
— Applying @ has a linear transformation will not affect the length of a vector or the angle between
two vectors; this means @ is an isometry
*|Qzl3=2"Q"Qx = z"x = ||z||3
*(Qr) (Qy)=2"Q"Qy=a"y=z-y
e An orthogonal matrix can rotate vectors but not scale them; all rotation matrices are orthogonal

Solving Linear Systems

e Solving systems in the form of Az = b is a common problem

« However solving by A7!b is almost never a good idea since A™! can be expensive to compute, reduces
solution accuracy, and is less efficient since a sparse A will have a dense A™!

+ Gaussian elimination works for any A and b, but we can only achieve O(n®) for A € R™ "; to get
better performance, we can exploit the structure of a matrix (e.g. sparse/dense, triangular, Hermitian,
etc)

— Simplest case: A diagonal, which we can solve in O(n)



— If A is upper or lower triangular, we can solve in O(n2); we can use each row to solve for exactly

a single element of x
— For a sparse matrix, if we can split it up into blocks, we can solve for each block individually

e Gaussian elimination is equivalent to first factorizing Ax = LUx = b and then solving Ly = b,Ux = y,

where L is lower triangular and U is upper triangular
— If we want to reuse A with different values of b, we can prefactorize A and reuse the factors to

save time
o In practice, use x = np.linalg.solve(A, b) in Python or x = A \ bin MATLAB
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o Example: solve [2 5] [372] = L]

— We could do this by Gaussian elimination:
*121_>121_>12x1_1
2 5 1 01 -1 0 1| |ze| |[-1

0 0 _

10 B

* Ty = —1 — T = 3
— Note the first row operation was (I -2 > A [(1) ﬂ

« |1 0]|1 2] |1 2
-2 1|2 5]/ |0 1
* Notice the matrix multiplying A is lower triangular and the result is upper triangular; now

we can invert the first matrix to get a form of A = LU, since the inverse of a lower triangular

matrix is also lower triangular
— LU factorization:

R AR
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* Now we can solve [é ﬂ [ml] =Y = [_11} , which gives us the same result

* Solve first

—_ o O

Matrix and Vector Norms

A general vector norm is any function ||| : R™ + [0, 00) which satisfies the following conditions:
1. || =0 < =0
2. Vee R,z € R", |lcz| = ||||z]|
3. va,y € R™, ||z + yl| < [z + [y

o ||z|| > 0 follows from these conditions
e As with the Euclidean norm, norms encode some notion of “length”
e Typical vector norms:
— The p-norm for p > 1 is defined as |[@, = (|21]P + |22|P + - - + |2n|?)7
* The 2-norm, or Euclidean norm, is an example of a p-norm
* If we constrain ||z||, = 1, we get boxes of various shapes; e.g. a 1-norm is a rotated square
in 2D, 2-norm is a circle in 2D, and infinity norm is a square in 2D; all other norms are
somewhere in between
— The oco-norm (infinity norm) is defined as ||z|o = max(|z1|, 22|, ..., |za])
e All p-norms for p > 1 (including the co-norm) are convex



The matriz norm on R™*™ induced by a vector norm ||-|| is given by
Al = max { || Az| | [l =1}

Or equivalently

A
A= max LAo]
wcRraro @]

e The induced vector norm is essentially the maximum norm of a unit vector after multiplying by A
o This makes the property that ||Az| < | Al
e Typical matrix norms:

— l-norm: ||A]|; = max Z|a”|
* This is equivalent to the maximum column sum
— 2-norm: ||A|2 = max{ VA ’ Jr c R"s.t. AT Az = \x }

* This is the square root of the largest eigenvalue of A A (intuitively we can interpret this as
the largest eigenvalue of A)
* Sometimes called the spectral radius of A

ZZM”‘P =VtrATA
i=1 j=1
* JAll2 < [|A||F always holds

— Frobenius norm: ||A|p =

— oo-norm (infinity norm): [|A|le = max Z|am|
* This is the maximum row sum
* Proof:
[A]loo = max { [|Az[|oc | [|2[loc =1}
o Note [Ax]; Zaux], s0 ||Az|lee = max Zaijmj < max2|aij||xj| <
"l "
e e lemae = me S ol = max S|

J J J
o We can show the bound the other way by selecting x; in a special way (see posted notes)

Condition Number

The condition number of A € R™*™ with respect to a given norm ||-|| is
cond A = [|A[[[|A7"]

if A is non-invertible, cond A = oo by definition.

e Recall that conditioning describes how a small error in the input propagates to an error in the output
e For a matrix, we ask the question: for finding & such that Aax = b, how does the solution x change if
we make a small change to the matrices A and b?
~ We can derive the relative condition number to be ||| A||[|A™!||, where ¢ is some input error
e e.g. if we used the 2-norm, we would essentially get the ratio between the largest eigenvalue and the
smallest eigenvalue; intuitively if these two eigenvalues are different, we will see more error since the
system is stiff
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