
Lecture 12, Oct 18, 2023
Inequality-Constrained Optimization

Figure 1: Active vs. inactive constraints.

• We will now consider the full optimization problem of minimizing f(x) subject to g(x) = 0 and
h(x) ≥ 0

• There are 2 possible cases for each inequality constraint hi; consider a minimum x, then either hi(x) = 0
this point (active), or hi(x) > 0 (inactive)

– In the first case, the inequality constraint is the same as an equality constraint and the optimum
will be on the boundary of the inequality region

– In the second case, the inequality constraint has effectively no impact on where the optimum is,
since it lies fully within the inequality region

– If there are multiple active inequality constraints, then the solution lies on the intersection of their
boundaries

• If we assume that all inequality constraints are active, we can then treat them as equality constraints
and use the Lagrange multiplier approach

– Λ(x, λ, µ) = f(x) − λT g(x) − µT h(x)
– Then for a critical point ∇⃗f(x) −

∑
i

λi∇⃗gi(x) −
∑

j

µj∇⃗hj(x) = 0 and gi(x) = hj(x) = 0, ∀i, j

• If we let µj = 0 whenever the inequality constraint hj is inactive (i.e. hj(x) ̸= 0), then the inactive
constraints drop out and the above condition holds for the general case

– Let ∀j, µjhj(x) = 0, then the condition above holds in general
– This condition is known as complementary slackness

Figure 2: Constraints on Lagrange multipliers for inequality constraints.
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• Note that in the equality constraint case, our Lagrange multipliers can be positive or negative; but for
inequality constraints, this is not the case

– Consider the diagram above where x∗ is a critical point and ∆x is some perturbation; let constraint
hj(x) be active

– Note that ∇⃗hi(x) is pointing inwards of the feasible set
– Intuitively, if ∇⃗f(x) and ∇⃗hi(x) have a negative dot product (i.e. they point at least somewhat in

the opposite direction), then we can move into our feasible set while decreasing f(x)
* But if ∇⃗f(x) and ∇⃗hi(x) have a positive dot product, then we cannot both decrease f(x)

while keeping the inequality constraint satisfied
– Let ∆x = ∇⃗hi(x∗)T , then

* hi(x∗ + ∆x) ≈ hi(x∗) + ∇⃗hi(x∗)∆x = hi(x∗) + ∇⃗h(x∗)∇⃗h(x∗)
* Since both terms on the right are positive, we know that hi(x∗ +∆x) ≥ 0, i.e. this perturbation

is still feasible
* f(x∗ + ∆x) ≈ f(x∗) + ∇⃗f(x∗)∆x = f(x∗) + ∇⃗f(x∗)∇⃗hi(x∗)T

* If the second term is negative, then we know that the perturbation decreases f , which means
x∗ is no longer a critical point – contradiction

– Therefore we must have that ∇⃗f(x∗)∇⃗hi(x∗)T ≥ 0 at a local minimum, hence ∇⃗f(x∗) = µi∇⃗hi(x∗)
where µi ≥ 0 (strictly greater if hi must be active)

– This condition is known as dual feasibility
• Note that we can always take an equality constraint and rewrite it in terms of 2 inequality constraints,

i.e. gi(x) = 0 ⇐⇒ gi(x) ≥ 0, −gi(x) ≥ 0
– This lets us write the critical point condition in terms of only inequality constraints

Theorem

Karush-Kuhn-Tucker (KTT) Conditions: The vector x∗ ∈ Rn is a critical point for minimizing f(x)
subject to g(x) = 0, h(x) ≥ 0 when there exists λ ∈ Rm and µ ∈ Rp such that:

1. Stationarity: ∇⃗f(x∗) −
∑

i

λi∇⃗gi(x∗) −
∑

j

µj∇⃗hj(x∗) = 0

2. Primal feasibility: g(x∗) = 0 and h(x∗) ≥ 0
3. Complementary slackness: ∀j, µjhj(x∗) = 0
4. Dual feasibility: ∀j, µj ≥ 0

• To find whether x∗ is a local minimum (instead of a maximum or saddle point), we need to check the
Hessian constrained to the subspace of Rn in which x can move without violating the constraints

• Example: optimal rectangle: same rectangle optimization constraint from last time, but we enforce
w ≤ w̄

– The inequality constraint can be expressed as w̄ − w ≥ 0
– The Lagrangian becomes Λ(w, l, λ, µ) = −wl − λ(2w + 2l − 1) − µ(w̄ − w)
– Using the KTT optimality conditions:

* Stationarity:
• ∂Λ

∂w
= −l∗ − 2λ∗ + µ∗ = 0

• ∂Λ
∂l

= −w∗ − 2λ∗ = 0
* Primal feasibility:

• 2w∗ + 2l∗ − 1 = 0
• w̄ − w̄∗ ≥ 0

* Complementary slackness: µ∗(w̄ − w̄∗) = 0
* Dual feasibility: µ∗ ≥ 0

– We now need to consider 2 cases:
* µ∗ = 0, where the inequality constraint is inactive, so we have w∗ = l∗ = 1

4 as before
• We can see that all our equations reduce to the same thing we had previously

* µ∗ ̸= 0, where the inequality constraint is active
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• We have w∗ = w̄ from complementary slackness
• λ∗ = − w̄

2 , l∗ = 1
2 − w̄

• Substituting into the first stationary equation, µ∗ = 1
2 − 2w̄

• Since µ∗ ≥ 0, this only holds if w̄ ≤ 1
4 – i.e. the constraint would only be active if w̄ ≤ 1

4
(above this value we just get the normal solution)

– In summary: when w̄ ≤ 1
4 , the constraint is active and we have w∗ = w̄, l∗ = 1

2 − w̄; when w̄ ≥ 1
4 ,

then the inequality constraint is active and w∗ = l∗ = 1
4

– In general inequality constraints complicate the problem since now we need to consider multiple
cases

Numerical Optimization Methods
• We will discuss two broad categories of algorithms:

– Sequential quadratic programming (SQP): iteratively solve a set of simpler, less constrained problems
that approximate the fully constrained problem

– Barrier methods: replace the constraints with penalties in the objective function, and then optimize
the new function using unconstrained methods

• SQP approximates f , g, h by simpler functions
– f is replaced by a quadratic objective while the constraints are replaced by linear constraints
– This is similar to Newton’s method – taking a quadratic approximation, solving for the minimum,

and then approximate again
– The active set method checks which constraints are active

* Given an active set, all constraints are treated as equality constraints and Lagrange multipliers
are used to minimize

– SQP only converges if we start with an initial guess in the neighbourhood of the true minimum,
similar to Newton’s method

– Most model predictive controllers (MPC controllers) use SQP methods

Figure 3: Illustration of barrier methods.

• Barrier methods add penalties to the objective for violating constraints, then optimizes the new objective
without constraints

– e.g. define a new objective as f ′(x) = f(x) + ρ
1

h(x) with ρ being some weight

– If constraints are not satisfied closely enough, increase ρ to penalize the cost more
– ρ is decreased iteratively if we are close enough to the constraints, which brings us closer to the

true minimum

Convex Optimization
• We want to develop methods for identifying convex problems
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Figure 4: Convex and non-convex sets.

Definition

A set S ⊆ Rn is convex if
∀x, y ∈ S, α ∈ [0, 1], αx + (1 − α)y ∈ S

• Additional useful properties:
– The intersection of convex sets is also a convex set

* This means if we combine two convex constraints, we also get a convex constraint back
– The sum and maximum of convex functions is also a convex function
– If f is convex, then { x | f(x) ≤ c } is a convex set for a fixed c ∈ R

* We can “chop off” a function below some line to get a convex set

Theorem

If the objective function f and feasible set of an optimization problem are both convex, then the
optimization problem possesses a unique minimum.

• An optimization problem is convex if its objective function is convex and its feasibility region is also a
convex set

– When a problem is convex, we can make strong convergence guarantees
– Intuition: if both x and y are in the feasible set, then any potential minimum that lies between

them is also in the feasible set
• Example: consider the constrained least-squares problem of minimizing ∥Ax − b∥2

2 subject to x ∈
x ∈ Rn|x ≥ 0

– The objective function is convex since it expands to xT AT Ax−2bT Ax+bT b, which has a Hessian
of AT A, which is positive semi-definite for any A

– We can also show that the feasible set is convex since the positive weighted sum of any two positive
numbers is also positive

– Therefore this problem is convex
• Example: optimizing the 1-norm, ∥x∥1 = |x1| + |x2| + · · · + |xn|

– We can rewrite it as minimizing
∑

i

yi with respect to x, y, subject to x, y ∈ { x, y ∈ Rn | yi ≥ xi, yi ≥ −xi }

– We’re forcing |xi| ≥ yi and trying to minimize the sum of yi

– This is now a convex problem: the objective function is convex since all yi are convex, so their sum
is convex; the feasible set is convex since yi − xi ≥ 0 and yi + xi ≥ 0 are both convex functions, so
if we let hi1(y, x) = yi − xi, then hi1 ≤ 0 is also convex; the intersection of both convex constraints
gives a convex feasible set

• Note that our optimal rectangle problem is not convex but we still found the global minimum
• Minimizing cT x subject to Ax = b is referred to as a linear program, which is a special convex problem

that can be solved very quickly
• Second-order cone programs are cT x subject to ∥Aix − bi∥2 ≤ di + cT x which are also convex
• What about nonconvex problems?
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– We can try to approximate f(x) with an easier (convex) problem
– We can sample the space of feasible x as “seeds” for starting points of a local optimization, optimize

all of them, and then picking the minimum
– Randomized algorithms also exist (e.g. simulated annealing)

• Sometimes we want to do online optimization, where the objective function changes over time
– A simple strategy is to use the old optimum x∗ as the initial guess for the new problem
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