Lecture 12, Oct 18, 2023

Inequality-Constrained Optimization
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Figure 1: Active vs. inactive constraints.

o We will now consider the full optimization problem of minimizing f(x) subject to g(x) = 0 and
h(z)>0
o There are 2 possible cases for each inequality constraint h;; consider a minimum @, then either h;(x) =0
this point (active), or h;(x) > 0 (inactive)
— In the first case, the inequality constraint is the same as an equality constraint and the optimum
will be on the boundary of the inequality region
— In the second case, the inequality constraint has effectively no impact on where the optimum is,
since it lies fully within the inequality region
— If there are multiple active inequality constraints, then the solution lies on the intersection of their
boundaries
o If we assume that all inequality constraints are active, we can then treat them as equality constraints
and use the Lagrange multiplier approach
~ M@, A p) = f(x) — Ag(a) — u"h()
~ Then for a critical point Vf(z) — > AiVgi(x) — Y 1;Vh;(x) = 0 and g;(x) = h;(x) = 0,Vi, j
i J

o If we let u; = 0 whenever the inequality constraint h; is inactive (i.e. hj(x) # 0), then the inactive
constraints drop out and the above condition holds for the general case
— Let Vj, ujhj(x) = 0, then the condition above holds in general
— This condition is known as complementary slackness
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Figure 2: Constraints on Lagrange multipliers for inequality constraints.



o Note that in the equality constraint case, our Lagrange multipliers can be positive or negative; but for
inequality constraints, this is not the case
— Consider the diagram above where x* is a critical point and Az is some perturbation; let constraint
hj(zx) be active

Note that Vh;(z) is pointing inwards of the feasible set
Intuitively, if Vf (z) and Vh; (z) have a negative dot product (i.e. they point at least somewhat in
the opposite direction), then we can move into our feasible set while decreasing f(x)
* But if Vf(x) and Vh;(z) have a positive dot product, then we cannot both decrease f(z)
while keeping the inequality constraint satisfied
Let Ax = Vh;(z*)T, then
* hi(x* 4+ Ax) ~ hi(z*) + Vhi(z*) Az = h(z*) + Vh(z*)Vh(z")
* Since both terms on the right are positive, we know that h;(x*+ Ax) > 0, i.e. this perturbation
is still feasible
* f(a"+ M) ~ f(") + V(@) Az = f(z*) + Vf(@*)Vhi(@")"
* If the second term is negative, then we know that the perturbation decreases f, which means
x* is no longer a critical point — contradiction
Therefore we must have that V f(x*)Vh(*)T > 0 at a local minimum, hence V f(2*) = 11;Vh;(z*)
where p; > 0 (strictly greater if h; must be active)
— This condition is known as dual feasibility
o Note that we can always take an equality constraint and rewrite it in terms of 2 inequality constraints,
Le. gi(z) =0 < gi(x) > 0,—gi(x) >0
— This lets us write the critical point condition in terms of only inequality constraints

Karush-Kuhn-Tucker (KTT) Conditions: The vector * € R™ is a critical point for minimizing f(x)
subject to g(x) = 0, h(x) > 0 when there exists A € R™ and pu € R? such that:

1. Stationarity: Vf(z*) — Z A\iVgi(z*) — Zujﬁhj(a}*) =0

i J
2. Primal feasibility: g(x*) = 0 and h(z*) > 0
3. Complementary slackness: Vj, p;h;(x*) =0
4. Dual feasibility: Vj, u; >0

\. J

o To find whether &* is a local minimum (instead of a maximum or saddle point), we need to check the
Hessian constrained to the subspace of R™ in which & can move without violating the constraints
o Example: optimal rectangle: same rectangle optimization constraint from last time, but we enforce
w < w
— The inequality constraint can be expressed as w —w > 0
— The Lagrangian becomes A(w,l, A\, p) = —wl — A(2w + 20 — 1) — p(w — w)
— Using the KTT optimality conditions:
* Stationarity:

A
B A S

* Primal feasibility:
o 2w 4+20"—-1=0
e w—w">0
* Complementary slackness: p*(w —w*) =0
* Dual feasibility: pu* >0
— We now need to consider 2 cases:

1
* u* =0, where the inequality constraint is inactive, so we have w* = [* = 1% before

e We can see that all our equations reduce to the same thing we had previously
* u* # 0, where the inequality constraint is active



from complementary slackness

e We have w* = w
w 1
e N=—— [ = -
2t T2 X
¢ Substituting into the first stationary equation, p* = 5~ 2w

1
e Since p* > 0, this only holds if w < = — i.e. the constraint would only be active if w < 1

(above this value we just get the normal solution)

— In summary: when w < T the constraint is active and we have w* = w,[* = 3~ w; when
1
then the inequality constraint is active and w* =1* = -

— In general inequality constraints complicate the problem since now we need to consider multiple

cases

Numerical Optimization Methods

e We will discuss two broad categories of algorithms:
— Sequential quadratic programming (SQP): iteratively solve a set of simpler, less constrained problems

that approximate the fully constrained problem
— Barrier methods: replace the constraints with penalties in the objective function, and then optimize
the new function using unconstrained methods

e SQP approximates f, g, h by simpler functions
— f is replaced by a quadratic objective while the constraints are replaced by linear constraints

— This is similar to Newton’s method — taking a quadratic approximation, solving for the minimum,

and then approximate again
— The active set method checks which constraints are active
* Given an active set, all constraints are treated as equality constraints and Lagrange multipliers

are used to minimize
— SQP only converges if we start with an initial guess in the neighbourhood of the true minimum,

similar to Newton’s method
— Most model predictive controllers (MPC controllers) use SQP methods

minimum of

N/f(x)

h(z) 20 |e—h(z) = 0

'
I
i
1
1
\ I
1
1
|
1

z* T

Figure 3: Illustration of barrier methods.

e Barrier methods add penalties to the objective for violating constraints, then optimizes the new objective

without constraints 1
— e.g. define a new objective as f'(z) = f(x) + pm with p being some weight
x
— If constraints are not satisfied closely enough, increase p to penalize the cost more
— p is decreased iteratively if we are close enough to the constraints, which brings us closer to the

true minimum

Convex Optimization

e« We want to develop methods for identifying convex problems



convex not convex
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Figure 4: Convex and non-convex sets.

A set S CR" is convex if

Ve,y € S,a € [0,1,ax+ (1 —a)y €S

o Additional useful properties:
— The intersection of convex sets is also a convex set
* This means if we combine two convex constraints, we also get a convex constraint back
— The sum and maximum of convex functions is also a convex function
— If f is convex, then { @ | f(x) < c} is a convex set for a fixed ¢ € R
* We can “chop off” a function below some line to get a convex set

If the objective function f and feasible set of an optimization problem are both convex, then the
optimization problem possesses a unique minimum.

e An optimization problem is convex if its objective function is convex and its feasibility region is also a
convex set
— When a problem is convex, we can make strong convergence guarantees
— Intuition: if both & and y are in the feasible set, then any potential minimum that lies between
them is also in the feasible set
« Example: consider the constrained least-squares problem of minimizing || Az — bl|3 subject to & €
zeR" x>0
— The objective function is convex since it expands to 7 AT Az — 207 Az +bTb, which has a Hessian
of AT A, which is positive semi-definite for any A
— We can also show that the feasible set is convex since the positive weighted sum of any two positive
numbers is also positive
— Therefore this problem is convex
o Example: optimizing the 1-norm, ||z|1 = |z1] + |z2| + - - + |z

— We can rewrite it as minimizing Z y; with respect to @, y, subject tox,y € { &,y € R" | y; > x;,y; > —x; }

3

— We're forcing |z;| > y; and trying to minimize the sum of y;

— This is now a convex problem: the objective function is convex since all y; are convex, so their sum
is convex; the feasible set is convex since y; — x; > 0 and y; + x; > 0 are both convex functions, so
if we let h;, (y,z) = y; — 4, then h;, < 0 is also convex; the intersection of both convex constraints
gives a convex feasible set

o Note that our optimal rectangle problem is not convex but we still found the global minimum

 Minimizing ¢’ x subject to Ax = b is referred to as a linear program, which is a special convex problem
that can be solved very quickly

+ Second-order cone programs are ¢!  subject to || A;x — b; |2 < d; + ¢’ x which are also convex

e What about nonconvex problems?



— We can try to approximate f(x) with an easier (convex) problem
— We can sample the space of feasible x as “seeds” for starting points of a local optimization, optimize
all of them, and then picking the minimum
— Randomized algorithms also exist (e.g. simulated annealing)
e Sometimes we want to do online optimization, where the objective function changes over time
— A simple strategy is to use the old optimum x* as the initial guess for the new problem
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