Lecture 12, Oct 18, 2023

Inequality-Constrained Optimization

Figure 1: Active vs. inactive constraints.

- We will now consider the full optimization problem of minimizing f(x) subject to g(x) = 0 and $h(x) \ge 0$
- There are 2 possible cases for each inequality constraint h_i ; consider a minimum \boldsymbol{x} , then either $h_i(\boldsymbol{x}) = 0$ this point (active), or $h_i(\boldsymbol{x}) > 0$ (inactive)
 - In the first case, the inequality constraint is the same as an equality constraint and the optimum will be on the boundary of the inequality region
 - In the second case, the inequality constraint has effectively no impact on where the optimum is, since it lies fully within the inequality region
 - If there are multiple active inequality constraints, then the solution lies on the intersection of their boundaries
- If we assume that all inequality constraints are active, we can then treat them as equality constraints and use the Lagrange multiplier approach
 - $-\Lambda(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\mu}) = f(\boldsymbol{x}) \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x}) \boldsymbol{\mu}^T \boldsymbol{h}(\boldsymbol{x})$

- Then for a critical point
$$\vec{\nabla} f(\boldsymbol{x}) - \sum_{i} \lambda_{i} \vec{\nabla} g_{i}(\boldsymbol{x}) - \sum_{j} \mu_{j} \vec{\nabla} h_{j}(\boldsymbol{x}) = \mathbf{0}$$
 and $g_{i}(\boldsymbol{x}) = h_{j}(\boldsymbol{x}) = \mathbf{0}, \forall i, j$

- If we let $\mu_j = 0$ whenever the inequality constraint h_j is inactive (i.e. $h_j(\mathbf{x}) \neq 0$), then the inactive constraints drop out and the above condition holds for the general case
 - Let $\forall j, \mu_i h_i(\boldsymbol{x}) = \boldsymbol{0}$, then the condition above holds in general
 - This condition is known as *complementary slackness*

Figure 2: Constraints on Lagrange multipliers for inequality constraints.

- Note that in the equality constraint case, our Lagrange multipliers can be positive or negative; but for inequality constraints, this is not the case
 - Consider the diagram above where \boldsymbol{x}^* is a critical point and $\Delta \boldsymbol{x}$ is some perturbation; let constraint $h_j(\boldsymbol{x})$ be active
 - Note that $\vec{\nabla} h_i(\boldsymbol{x})$ is pointing inwards of the feasible set
 - Intuitively, if $\nabla f(\boldsymbol{x})$ and $\nabla h_i(\boldsymbol{x})$ have a negative dot product (i.e. they point at least somewhat in the opposite direction), then we can move into our feasible set while decreasing $f(\boldsymbol{x})$
 - * But if $\vec{\nabla} f(\boldsymbol{x})$ and $\vec{\nabla} h_i(\boldsymbol{x})$ have a positive dot product, then we cannot both decrease $f(\boldsymbol{x})$ while keeping the inequality constraint satisfied
 - Let $\Delta \boldsymbol{x} = \vec{\nabla} h_i(\boldsymbol{x}^*)^T$, then
 - * $h_i(\boldsymbol{x}^* + \Delta \boldsymbol{x}) \approx h_i(\boldsymbol{x}^*) + \vec{\nabla}h_i(\boldsymbol{x}^*)\Delta \boldsymbol{x} = h_i(\boldsymbol{x}^*) + \vec{\nabla}h(\boldsymbol{x}^*)\vec{\nabla}h(\boldsymbol{x}^*)$
 - * Since both terms on the right are positive, we know that $h_i(\boldsymbol{x}^* + \Delta \boldsymbol{x}) \ge 0$, i.e. this perturbation is still feasible
 - * $f(\boldsymbol{x}^* + \Delta x) \approx f(\boldsymbol{x}^*) + \vec{\nabla} f(\boldsymbol{x}^*) \Delta \boldsymbol{x} = f(\boldsymbol{x}^*) + \vec{\nabla} f(\boldsymbol{x}^*) \vec{\nabla} h_i(\boldsymbol{x}^*)^T$
 - * If the second term is negative, then we know that the perturbation decreases f, which means x^* is no longer a critical point contradiction
 - Therefore we must have that $\vec{\nabla} f(\boldsymbol{x}^*) \vec{\nabla} h_i(\boldsymbol{x}^*)^T \ge 0$ at a local minimum, hence $\vec{\nabla} f(\boldsymbol{x}^*) = \mu_i \vec{\nabla} h_i(\boldsymbol{x}^*)$ where $\mu_i \ge 0$ (strictly greater if h_i must be active)
 - This condition is known as *dual feasibility*
- Note that we can always take an equality constraint and rewrite it in terms of 2 inequality constraints, i.e. g_i(x) = 0 ⇐⇒ g_i(x) ≥ 0, -g_i(x) ≥ 0
 - This lets us write the critical point condition in terms of only inequality constraints

Theorem

Karush-Kuhn-Tucker (KTT) Conditions: The vector $\boldsymbol{x}^* \in \mathbb{R}^n$ is a critical point for minimizing $f(\boldsymbol{x})$ subject to $\boldsymbol{g}(\boldsymbol{x}) = 0$, $\boldsymbol{h}(\boldsymbol{x}) \geq \boldsymbol{0}$ when there exists $\boldsymbol{\lambda} \in \mathbb{R}^m$ and $\boldsymbol{\mu} \in \mathbb{R}^p$ such that:

1. Stationarity:
$$\vec{\nabla} f(\boldsymbol{x}^*) - \sum \lambda_i \vec{\nabla} g_i(\boldsymbol{x}^*) - \sum \mu_j \vec{\nabla} h_j(\boldsymbol{x}^*) = \mathbf{0}$$

- 2. Primal feasibility: $g(x^*) = 0$ and $h(x^*) \ge 0$
- 3. Complementary slackness: $\forall j, \mu_j h_j(\boldsymbol{x}^*) = 0$
- 4. Dual feasibility: $\forall j, \mu_j \geq 0$
- To find whether x^* is a local minimum (instead of a maximum or saddle point), we need to check the Hessian constrained to the subspace of \mathbb{R}^n in which x can move without violating the constraints
- Example: optimal rectangle: same rectangle optimization constraint from last time, but we enforce $w \leq \bar{w}$
 - The inequality constraint can be expressed as $\bar{w}-w\geq 0$
 - The Lagrangian becomes $\Lambda(w, l, \lambda, \mu) = -wl \lambda(2w + 2l 1) \mu(\bar{w} w)$
 - Using the KTT optimality conditions:

* Stationarity:

•
$$\frac{\partial \Lambda}{\partial w} = -l^* - 2\lambda^* + \mu^* = 0$$

•
$$\frac{\partial \Lambda}{\partial 1} = -w^* - 2\lambda^* = 0$$

- $2w^* + 2l^* 1 = 0$
- $\overline{w} \overline{w}^* \ge 0$
- * Complementary slackness: $\mu^*(\bar{w} \bar{w}^*) = 0$
- * Dual feasibility: $\mu^* > 0$
- We now need to consider 2 cases:
 - * $\mu^* = 0$, where the inequality constraint is inactive, so we have $w^* = l^* = \frac{1}{4}$ as before
 - We can see that all our equations reduce to the same thing we had previously
 - * $\mu^* \neq 0$, where the inequality constraint is active

- We have w^{*} = w̄ from complementary slackness
 λ^{*} = w̄/2, l^{*} = 1/2 w̄
- Substituting into the first stationary equation, $\mu^* = \frac{1}{2} 2\bar{w}$
- Since $\mu^* \ge 0$, this only holds if $\bar{w} \le \frac{1}{4}$ i.e. the constraint would only be active if $\bar{w} \le \frac{1}{4}$ (above this value we just get the normal solution)
- In summary: when $\bar{w} \leq \frac{1}{4}$, the constraint is active and we have $w^* = \bar{w}, l^* = \frac{1}{2} \bar{w}$; when $\bar{w} \geq \frac{1}{4}$. then the inequality constraint is active and $w^* = l^* = \frac{1}{4}$

- In general inequality constraints complicate the problem since now we need to consider multiple cases

Numerical Optimization Methods

- We will discuss two broad categories of algorithms:
 - Sequential quadratic programming (SQP): iteratively solve a set of simpler, less constrained problems that approximate the fully constrained problem
 - Barrier methods: replace the constraints with penalties in the objective function, and then optimize the new function using unconstrained methods
- SQP approximates f, g, h by simpler functions
 - -f is replaced by a quadratic objective while the constraints are replaced by linear constraints
 - This is similar to Newton's method taking a quadratic approximation, solving for the minimum, and then approximate again
 - The active set method checks which constraints are active
 - * Given an active set, all constraints are treated as equality constraints and Lagrange multipliers are used to minimize
 - SQP only converges if we start with an initial guess in the neighbourhood of the true minimum, similar to Newton's method
 - Most model predictive controllers (MPC controllers) use SQP methods

Figure 3: Illustration of barrier methods.

- Barrier methods add penalties to the objective for violating constraints, then optimizes the new objective without constraints
 - e.g. define a new objective as $f'(x) = f(x) + \rho \frac{1}{h(x)}$ with ρ being some weight
 - If constraints are not satisfied closely enough, increase ρ to penalize the cost more
 - $-\rho$ is decreased iteratively if we are close enough to the constraints, which brings us closer to the true minimum

Convex Optimization

• We want to develop methods for identifying convex problems

Figure 4: Convex and non-convex sets.

- Additional useful properties:
 - The intersection of convex sets is also a convex set
 - * This means if we combine two convex constraints, we also get a convex constraint back
 - The sum and maximum of convex functions is also a convex function
 - If f is convex, then $\{ \boldsymbol{x} \mid f(\boldsymbol{x}) \leq c \}$ is a convex set for a fixed $c \in \mathbb{R}$
 - * We can "chop off" a function below some line to get a convex set

Theorem

If the objective function f and feasible set of an optimization problem are both convex, then the optimization problem possesses a unique minimum.

- An optimization problem is convex if its objective function is convex and its feasibility region is also a convex set
 - When a problem is convex, we can make strong convergence guarantees
 - Intuition: if both x and y are in the feasible set, then any potential minimum that lies between them is also in the feasible set
- Example: consider the constrained least-squares problem of minimizing $\|Ax b\|_2^2$ subject to $x \in$ $oldsymbol{x} \in \mathbb{R}^n | oldsymbol{x} \ge oldsymbol{0}$
 - The objective function is convex since it expands to $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} 2b^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{b}$, which has a Hessian of $A^T A$, which is positive semi-definite for any A
 - We can also show that the feasible set is convex since the positive weighted sum of any two positive numbers is also positive
 - Therefore this problem is convex
- Example: optimizing the 1-norm, $\|\boldsymbol{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|$ We can rewrite it as minimizing $\sum_i y_i$ with respect to $\boldsymbol{x}, \boldsymbol{y}$, subject to $\boldsymbol{x}, \boldsymbol{y} \in \{ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n \mid y_i \ge x_i, y_i \ge -x_i \}$
 - We're forcing $|x_i| \geq y_i$ and trying to minimize the sum of y_i
 - This is now a convex problem: the objective function is convex since all y_i are convex, so their sum is convex; the feasible set is convex since $y_i - x_i \ge 0$ and $y_i + x_i \ge 0$ are both convex functions, so if we let $h_{i_1}(y, x) = y_i - x_i$, then $h_{i_1} \leq 0$ is also convex; the intersection of both convex constraints gives a convex feasible set
- Note that our optimal rectangle problem is not convex but we still found the global minimum
- Minimizing $c^T x$ subject to Ax = b is referred to as a *linear program*, which is a special convex problem • that can be solved very quickly
- Second-order cone programs are $c^T x$ subject to $||A_i x b_i||_2 \le d_i + c^T x$ which are also convex
- What about nonconvex problems?

- We can try to approximate $f(\boldsymbol{x})$ with an easier (convex) problem
- We can sample the space of feasible x as "seeds" for starting points of a local optimization, optimize all of them, and then picking the minimum
- Randomized algorithms also exist (e.g. simulated annealing)
- Sometimes we want to do *online optimization*, where the objective function changes over time
 - A simple strategy is to use the old optimum x^* as the initial guess for the new problem