
Lecture 9, Oct 5, 2023
Multidimensional Kalman Filtering

• We can generalize our model to multiple degrees of freedom with a separate measurement relation:
– xk+1 = Akxk + Bkuk + vk (the state, or process equation)
– zk + Dkxk + wk (the measurement model)
– Where Ak is the state update matrix, Bk is the control matrix, zk is the measurement, Dk is the

measurement matrix, vk is the process (or model) noise and wk is the measurement noise
– Again assume vk ∼ N (0, Qk), wk ∼ N (0, Rk), i.e. zero-mean noise with covariances Qk, Rk

– In practice we can find Qk and Rk through testing and characterization of the system; depending
on the model, we may be able to estimate it mathematically

• Let x̂k|j be the estimate of xk given measurements { z0, . . . , zj }, with Pk|j as its covariance
• Kalman filtering is a two-branch process divided into state and covariance estimations:

– Given P̂k|k (the previous best estimate), uk (the control input), Pk|k (the previous covariance)
– State estimation:

1. Predict the next state: x̂k+1|k = Akx̂k|k + Bkuk

2. Predict the next measurement: ẑk+1|k = Dk+1x̂k+1|k
3. Calculate the measurement residual: sk+1 = zk+1 − ẑk+1|k
4. Update the state estimate: x̂k+1|k+1 = x̂k+1|k + Wk+1sk+1

– Covariance estimation:
1. Predict the state covariance: Pk+1|k = AkPk|kAT

k + Qk

2. Predict the measurement covariance: Sk+1 = Dk+1Pk+1|kDT
k+1 + Rk+1

3. Calculate the Kalman gain: Wk+1 = Pk+1|kDT
k+1S−1

k+1
4. Update the state covariance: Pk+1|k+1 = Pk+1|k − Wk+1Sk+1W T

k+1
• The state covariance estimation part can be combined into a single equation, which is known as the

Ricatti equation
• This only works if we have noise – if Rk+1 = 0, often Sk+1 is not invertible; however if Rk+1 is

invertible, then due to the positive-definiteness of Pk+1|k, we are guaranteed that S is invertible
• Example: body in free fall

– Model:
[
xk+1
vk+1

]
=

[
1 1
0 1

] [
xk

vk

]
+

[
−1

2g

−g

]
– We will measure the height: zk =

[
1 0

] [
xk

vk

]
+ wk

– Take noise to be Qk = 0, Rk = 1

Optimality of Kalman Filtering
• If we expand the update relations we get:

– x̂k+1 = x̂k+1|k + Wk+1(Dk+1xk+1 + wk+1 − Dk+1x̂k+1|k)
– Pk+1|k+1 = (1 − Wk+1Dk+1)(AkPk|kAk + Qk)(1 − Wk+1Dk+1)T + Wk+1Rk+1W T

k+1
• We would want to minimize ε2

k+1 = E
[
∥x̂k+1|k+1 − xk+1∥2]

, i.e. the expected error
– ε2

k+1 = E
[
∥x̂k+1|k+1 − xk+1∥2]

= E
[
(x̂k+1|k+1 − xk+1)T (x̂k+1|k+1 − xk+1)

]
= trE

[
(x̂k+1|k+1 − xk+1)(x̂k+1|k+1 − xk+1)T

]
= tr Pk+1|k+1

– This means that to minimize the expected error, we should minimize the covariance

• To minimize the error, we solve for
∂ε2

k+1
∂Wk+1

= 0 to get the optimal W

– Note: ∂ tr AB

∂B
= AT for matrices A, B

1



– If we do this, we get
∂ tr Pk+1|k+1

∂Wk+1
= −2Pk+1|k+1DT

k+1 + 2Wk+1Sk+1 = 0 where Sk+1 is defined
above

– Assuming Sk+1 is invertible, solve to get Wk+1 = Pk+1|kDT
k+1S−1

k+1
• Hence Kalman filtering is an optimal estimator

Extended Kalman Filtering (EKF)
• What if we didn’t have a linear process/measurement model?
• In general, we can have xk+1 = f(xk, uk) + vk, zk+1 = h(xk+1) + wk+1

– Note we are assuming that noise is additive right now
• We simply linearize the system with the Jacobian
• For the predictions, we can directly do x̂k+1|k = f(x̂k|k, uk) and ẑk+1|k = h(x̂k|k)
• For the state covariance estimate, we will linearize about x̂k+1|k, uk:

– Ak = ∂f

∂xT
k

∣∣∣∣
x̂k+1|k,uk

, Bk = ∂f

∂uT
k

∣∣∣∣
x̂k+1|k,uk

, Dk+1 = ∂h

∂xT
k

∣∣∣∣
x̂k+1|k

* Note that now the matrices such as Ak are dependent on our state!
• The procedure is identical to that of normal Kalman filtering, except the nonlinear model is used for

prediction and measurement, while the linearized Jacobians are used for covariance estimation
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