Lecture 9, Oct 5, 2023

Multidimensional Kalman Filtering

- We can generalize our model to multiple degrees of freedom with a separate measurement relation:
 - $\boldsymbol{x}_{k+1} = \boldsymbol{A}_k \boldsymbol{x}_k + \boldsymbol{B}_k \boldsymbol{u}_k + \boldsymbol{v}_k$ (the state, or process equation)
 - $\boldsymbol{z}_k + \boldsymbol{D}_k \boldsymbol{x}_k + \boldsymbol{w}_k$ (the measurement model)
 - Where A_k is the state update matrix, B_k is the control matrix, z_k is the measurement, D_k is the measurement matrix, v_k is the process (or model) noise and w_k is the measurement noise
 - Again assume $v_k \sim \mathcal{N}(\mathbf{0}, Q_k), w_k \sim \mathcal{N}(\mathbf{0}, R_k)$, i.e. zero-mean noise with covariances Q_k, R_k
 - In practice we can find Q_k and R_k through testing and characterization of the system; depending on the model, we may be able to estimate it mathematically
- Let $\hat{x}_{k|j}$ be the estimate of x_k given measurements $\{z_0, \ldots, z_j\}$, with $P_{k|j}$ as its covariance
- Kalman filtering is a two-branch process divided into state and covariance estimations:
 - Given $\dot{P}_{k|k}$ (the previous best estimate), u_k (the control input), $P_{k|k}$ (the previous covariance) - State estimation:
 - 1. Predict the next state: $\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + B_k u_k$
 - 2. Predict the next measurement: $\hat{z}_{k+1|k} = D_{k+1}\hat{x}_{k+1|k}$
 - 3. Calculate the measurement residual: $s_{k+1} = z_{k+1} \hat{z}_{k+1|k}$
 - 4. Update the state estimate: $\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + W_{k+1}s_{k+1}$
 - Covariance estimation:
 - 1. Predict the state covariance: $P_{k+1|k} = A_k P_{k|k} A_k^T + Q_k$
 - 2. Predict the measurement covariance: $S_{k+1} = D_{k+1}P_{k+1|k}D_{k+1}^T + R_{k+1}$
 - 3. Calculate the Kalman gain: $W_{k+1} = P_{k+1|k} D_{k+1}^T S_{k+1}^{-1}$
 - 4. Update the state covariance: $P_{k+1|k+1} = P_{k+1|k} W_{k+1}S_{k+1}W_{k+1}^T$

1 -

- The state covariance estimation part can be combined into a single equation, which is known as the *Ricatti equation*
- This only works if we have noise if $\mathbf{R}_{k+1} = \mathbf{0}$, often \mathbf{S}_{k+1} is not invertible; however if \mathbf{R}_{k+1} is invertible, then due to the positive-definiteness of $\mathbf{P}_{k+1|k}$, we are guaranteed that \mathbf{S} is invertible
- Example: body in free fall

- Model:
$$\begin{bmatrix} x_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_k \\ v_k \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}g \\ -g \end{bmatrix}$$

- We will measure the height: $z_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_k \\ v_k \end{bmatrix} + w_k$

– Take noise to be $\boldsymbol{Q}_k = \boldsymbol{0}, \boldsymbol{R}_k = 1$

Optimality of Kalman Filtering

- If we expand the update relations we get:
 - $\hat{x}_{k+1} = \hat{x}_{k+1|k} + W_{k+1}(D_{k+1}x_{k+1} + w_{k+1} D_{k+1}\hat{x}_{k+1|k})$

$$-P_{k+1|k+1} = (\mathbf{1} - W_{k+1}D_{k+1})(A_kP_{k|k}A_k + Q_k)(\mathbf{1} - W_{k+1}D_{k+1})^T + W_{k+1}R_{k+1}W_{k+1}^T$$

We would want to minimize $\varepsilon_{k+1}^2 = \mathbb{E}\left[\|\hat{x}_{k+1|k+1} - x_{k+1}\|^2\right]$, i.e. the expected error

$$-\varepsilon_{k+1}^2 = \mathbb{E}\left[\|\hat{x}_{k+1|k+1} - x_{k+1}\|^2\right] \\ = \mathbb{E}\left[(\hat{x}_{k+1|k+1} - x_{k+1})^T(\hat{x}_{k+1|k+1} - x_{k+1})\right] \\ + \mathbb{E}\left[(\hat{x}_{k+1|k+1} - x_{k+1})^T(\hat{x}_{k+1|k+1} - x_{k+1})\right]$$

$$= \operatorname{tr} \mathbb{E} \left[(\hat{\boldsymbol{x}}_{k+1|k+1} - \boldsymbol{x}_{k+1}) (\hat{\boldsymbol{x}}_{k+1|k+1} - \boldsymbol{x}_{k+1})^T \right]$$

= tr $\boldsymbol{P}_{k+1|k+1}$

- This means that to minimize the expected error, we should minimize the covariance

- To minimize the error, we solve for $\frac{\partial \varepsilon_{k+1}^2}{\partial W_{k+1}} = \mathbf{0}$ to get the optimal W
 - Note: $\frac{\partial \operatorname{tr} \boldsymbol{A} \boldsymbol{B}}{\partial \boldsymbol{B}} = \boldsymbol{A}^T$ for matrices $\boldsymbol{A}, \boldsymbol{B}$

- If we do this, we get $\frac{\partial \operatorname{tr} \boldsymbol{P}_{k+1|k+1}}{\partial \boldsymbol{W}_{k+1}} = -2\boldsymbol{P}_{k+1|k+1}\boldsymbol{D}_{k+1}^T + 2\boldsymbol{W}_{k+1}\boldsymbol{S}_{k+1} = \boldsymbol{0}$ where \boldsymbol{S}_{k+1} is defined above

– Assuming S_{k+1} is invertible, solve to get $W_{k+1} = P_{k+1|k} D_{k+1}^T S_{k+1}^{-1}$

• Hence Kalman filtering is an *optimal* estimator

Extended Kalman Filtering (EKF)

- What if we didn't have a linear process/measurement model?
- In general, we can have $x_{k+1} = f(x_k, u_k) + v_k, z_{k+1} = h(x_{k+1}) + w_{k+1}$
- Note we are assuming that noise is additive right now
- We simply linearize the system with the Jacobian
- For the predictions, we can directly do $\hat{x}_{k+1|k} = f(\hat{x}_{k|k}, u_k)$ and $\hat{z}_{k+1|k} = h(\hat{x}_{k|k})$
- For the state covariance estimate, we will linearize about $\hat{x}_{k+1|k}, u_k$:

$$egin{aligned} &-egin{aligned} egin{aligned} egin{aligned} egin{aligned} &-egin{aligned} egin{aligned} egin{aligned}$$

* Note that now the matrices such as A_k are dependent on our state!

• The procedure is identical to that of normal Kalman filtering, except the nonlinear model is used for prediction and measurement, while the linearized Jacobians are used for covariance estimation