
Lecture 8, Oct 3, 2023
Localization

• Localization is the process of determining where the robot is
– Do we already have a map (i.e. landmarks) or do we need to build one?
– How do we measure uncertainty arising from sensors and actuators?
– How do we formulate the best estimate for localization from uncertain measurements?

• Any sensor measurement will invariably be corrupted by noise to some extent
– Measurements are often distributed according to a Gaussian, due to the central limit theorem

Propagation of Error – Odometry Example
• How does uncertainty in measurements propagate?
• The covariance matrix generalizes variance to multiple dimensions

– Σ = E[(x − E(x))(x − E(x))T ]
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– If we take the covariance between two different variables, it is known as the cross-covariance
– cov(x, y) = E[(x − µx)(y − µy)T ]

• Note some important properties of covariance:
1. Σ = E[xxT ] − µµT

2. ΣT = Σ ≥ 0, i.e. the covariance matrix is semi-definite
3. cov(x, y) = cov(y, x)T

4. cov(x1 + x2, y) = cov(x1, y) + cov(x2, y), i.e. covariance is bilinear
5. cov(Ax + a, By + b) = A cov(x, y)BT

6. cov(x, y) = 0 if x and y are independent (but a zero covariance does not mean no correlation)
• Let y = f(x), then in general we can see how Σy relates to Σx

– By Taylor expansion y = y0 + (∇⃗f)0(x − x0)
* Then (∇⃗f)0x = Ax and y0 − (∇⃗f)0x0 = a

* By property 5 above, Σy = (∇⃗f)0Σx(∇⃗f)T
0

• Consider the problem of determining pose using only odometry, i.e. movement of the wheels ∆s =
[

∆sl

∆sr

]

– ∆x =
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• Our new position is given by ∆x′ = f(x + ∆s)

– Linearize: x′ = x + (∇⃗∆sf)0∆s where ∇⃗∆sf is the Jacobian
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
– Assume uncorrelated odometry error and Σ∆ =

[
σ2

∆,l 0
0 σ2

∆,r

]
– Error propagates as Σx′ = Σx + (∇⃗∆sf)Σ∆(∇⃗∆s

f)T

– Notice that the part we add is always positive due to the positive-semidefiniteness of the covariance,
so the error always grows!

• This means using odometry alone, our estimate of where the robot is will get worse with time
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1D Kalman Filtering
• If we have n measurements for a static variable x, how do we obtain the best estimate x̂?

– We can try to minimize e =
n∑

k=1
wk(x̂ − xk)2, i.e. weighted least squares

– The weight can be wk = 1
σ2

k

, so that measurements with higher variance (uncertainty) are weighted

less
– The solution is given by x̂ =

∑
k σ−2

k xk∑
k σ−2

k

* This is a weighted average of all the xk with weights 1
σ2

k

• Consider the case where we have only 2 measurements, then x̂ = σ2
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– Then the variance of x̂ is var x̂ =
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– But note, this is less than both σ2

1 and σ2
2 !

• Note also x̂ = σ2
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– This is a much more convenient form for us, since we’ve turned it from batch form (needing all
measurements at once) into a recursive form (where we can continuously update)

• If we have x̂k, σ̂k as the previous estimate at the current timestep, and we get a new measurement xk+1
with variance σ2

k+1 then we can update:

– x̂k+1 = x̂k + σ̂2
k

σ̂2
k + σ2

k+1
(xk+1 − x̂) = x̂k + Wk+1(xk+1 − x̂k)

– σ̂k+1 =
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kσ2
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σ̂2
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= σ̂2

k − Wk+1σ̂2
k

– W is known as the Kalman gain
– We can see that this is similar to a feedback control law – the correction to the state is the gain

multiplied by the “error”
• Kalman filtering is a special case of Bayesian filtering, where the distribution is a Gaussian
• But we still haven’t accounted for the fact that x may be dynamic, i.e. it can evolve over time; to

account for this, we will predict what the new state should be based on the old estimate, and then
compute the error from the measurement of the new state

– Consider the 1D state update equation xk+1 = xk + uk + vk where uk is the control input and vk

is some noise
* vk ∼ N (0, ς2

k), i.e. normally distributed, zero-mean with variance ς2
k

* Assume that uk can be accurately delivered, i.e. there is no noise
– Let x̂k|k be the estimate of x at step k, given measurements { x0, x1, . . . , xk }
– Let x̂k+1|k be the prediction of x at step k + 1, given measurements { x0, x1, . . . , xk }

* x̂k+1|k = x̂k|k + uk (note since the noise is zero-mean, we can disregard it)
– Now to get x̂k+1|k+1, we can use the same Kalman update formula as above

* σ̂2
k+1|k = σ̂2

k|k + ς2
k+1

* Wk+1 =
σ2

k+1|k

σ2
k+1|k + σ2

k+1
* x̂k+1|k+1 = x̂k+1|k + Wk+1(xk+1 − x̂k+1|k)
* σ̂2

k+1|k+1 = σ̂2
k+1|k − Wk+1σ̂2

k+1|k
• Intuitively, Kalman filters combine an estimate and a new measurement, both of which have some

uncertainty, and finds the most likely new state according to the distributions of error in both
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Figure 1: Diagram of Kalman filtering.
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