Lecture 8, Oct 3, 2023

Localization

e Localization is the process of determining where the robot is
— Do we already have a map (i.e. landmarks) or do we need to build one?
— How do we measure uncertainty arising from sensors and actuators?
— How do we formulate the best estimate for localization from uncertain measurements?
e Any sensor measurement will invariably be corrupted by noise to some extent
— Measurements are often distributed according to a Gaussian, due to the central limit theorem

Propagation of Error — Odometry Example

e How does uncertainty in measurements propagate?
e The covariance matrix generalizes variance to multiple dimensions
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— If we take the covariance between two different variables, it is known as the cross-covariance
- covi@,y) = El(@ — p.)(y — 1))
e Note some important properties of covariance:
1. ¥ =Elza’] — pu”
ET 3 >0, i.e. the covariance matrix is semi-definite
( ) - COV(y7 )T
v(acl + x2,y) = cov(xy,y) + cov(xa, y), i.e. covariance is bilinear
cov(Aa: + a, By + b) = Acov(z,y)BT
6. cov(x,y) = 0 if  and y are independent (but a zero covariance does not mean no correlation)
Let y = f(x), then in general we can see how X, relates to X,
— By Taylor expansion y = yg + (§f)0(w —xp)
* Then (ﬁf)oac = Az and yg — (ﬁf)o:no =a
* By property 5 above, 3, = (VHoZ(VHE
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e Consider the problem of determining pose using only odometry, i.e. movement of the wheels As = [ﬁjl]
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« Our new position is given by Az’ = f(x + As)
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— Linearize: ¢’ = x + (ﬁAsf)OAs where ﬁAsf is the Jacobian | 1 sin® ~sinf
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— Error propagates as X,s = X, + (ﬁAsf)EA(ﬁAsf)T
Notice that the part we add is always positive due to the positive-semidefiniteness of the covariance,
so the error always grows!
e This means using odometry alone, our estimate of where the robot is will get worse with time

— Assume uncorrelated odometry error and ¥ = [



1D Kalman Filtering

e If we have n measurements for a static variable x, how do we obtain the best estimate Z?
n

— We can try to minimize e = Z wi (2 — )2, i.e. weighted least squares
k=1
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— The weight can be wy, = —, so that measurements with higher variance (uncertainty) are weighted
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* This is a weighted average of all the x), with weights —;
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— The solution is given by & =
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o Consider the case where we have only 2 measurements, then = — 2 571+ —5 L 572
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— Then the variance of % is var & = ﬁ o? + ﬁ 03 = %
o1 + 03 o1 t 03 o1 + 03
— But note, this is less than both o? and 03!
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+ Note also = — 2 521+ —5 L 2m2=x1+ﬁ(a:2—x1)
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— This is a much more convenient form for us, since we’ve turned it from batch form (needing all
measurements at once) into a recursive form (where we can continuously update)
o If we have %, 61 as the previous estimate at the current timestep, and we get a new measurement xjy1

with variance o7 11 then we can update:
52

— Bpg1 =i + > (Tpt1 — &) = & + Wi (241 — 21)
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— W is known as the Kalman gain
— We can see that this is similar to a feedback control law — the correction to the state is the gain
multiplied by the “error”
o Kalman filtering is a special case of Bayesian filtering, where the distribution is a Gaussian
e But we still haven’t accounted for the fact that x may be dynamic, i.e. it can evolve over time; to
account for this, we will predict what the new state should be based on the old estimate, and then
compute the error from the measurement of the new state
— Consider the 1D state update equation xx11 = ) + ur + v where uy, is the control input and vy
is some noise
* o ~ N(0, g,%)7 i.e. normally distributed, zero-mean with variance g,?
* Assume that uy can be accurately delivered, i.e. there is no noise
— Let )5, be the estimate of = at step k, given measurements { xo, z1,...,2x }
— Let #441)% be the prediction of x at step k + 1, given measurements { xo, z1,..., %) }
* Zp1k = Lg|k + ur (note since the noise is zero-mean, we can disregard it)
— Now to get Zx11jx4+1, we can use the same Kalman update formula as above
* 62+1|k = ‘ATIQM + Sitg1
% Ul%+1|k
Wipi = 5——5—
Ttk T Okt1
* k1 = Trpe Wit (@rg1 — Zrgagr)
* &1%+1|k+1 = 61?:+1\k - Wk+1&i+l\k
o Intuitively, Kalman filters combine an estimate and a new measurement, both of which have some
uncertainty, and finds the most likely new state according to the distributions of error in both
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Figure 1: Diagram of Kalman filtering.
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