
Lecture 7, Sep 28, 2023
Stability for Nonlinear Systems – Lyapunov’s Method

• In general a nonlinear model is characterized by ẋ = f(x, u)
• One approach is locally linearizing using the Jacobian around a particular state and control input

– ∆ẋ = A∆x + Bu where ∆x = x − xd and xd is the set point

– A = ∂f

∂xT

∣∣∣∣
x=xd

, B = ∂f

∂uT

∣∣∣∣
u=0

– With this we can apply the normal feedback methods with u = −F ∆x =⇒ ∆ẋ = (A − BF )∆x
and choose F appropriately to put the poles in the left-half plane

– Because this a local approximation, it will not work when the state is significantly different from
the linearization point

• Another approach is gain scheduling, where we design a set of gains for a variety of different set points
of the nonlinear system (i.e. “scheduling” the gains according to where you are in state space)

– However this requires a lot of work and more importantly cannot guarantee stability
• To guarantee stability for a nonlinear system, we can use Lyapunov’s method

Definition

The solution x(t; x0, t0) to the system ẋ = f(x, t) is said to be stable in the Lyapunov sense (aka
L-stable) if

∀ε > 0, ∃δ > 0 s.t. ∥∆x0∥ < δ =⇒ ∀t > t0, ∥∆x∥ < ε

x is asympotitcally stable if lim
t→∞

∥∆x∥ = 0; exponential stability further requires that ∥∆x∥ decreases
exponentially.

Figure 1: Illustration of Lyapunov stability.

Definition

A function v(x) is positive-definite if

∀x ̸= 0, v(x) > 0 and v(0) = 0

and negative-definite if
∀x ̸= 0, v(x) < 0 and v(0) = 0

v(x) is positive/negative-semidefinite if v(x) ≥ 0/v(x) ≤ 0 for all x.
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Theorem

Let ẋ = f(x) with an equilibrium at x = 0; if we can find a positive-definite v(x), and v̇(x) is
negative-semidefinite, then x = 0 is stable. If v̇(x) is negative-definite, then x = 0 is asymptotically
stable. Note that

v̇ = ∂v

∂xT
ẋ = ∂v

∂xT
f(x)

This function v(x) is known as a Lyapunov function.

• v(x) can be thought of as a potential energy surface; since v̇(x) is negative-(semi)definite, we always
go down the surface, and since v(x) is positive definite, we can’t go down lower than 0, which is the
location of the equilibrium

– If v̇(x) is merely negative-semidefinite, we can get “stuck” before reaching the equilibrium (e.g. in
a local minimum), but the solution is still stable

• Just because you can’t find a Lyapunov function doesn’t mean the system is unstable!
• However we can invert the result and find a positive-definite v̇(x), which would mean the system is

unstable
• Example: ẋ1 = x2 + αx1(x2

1 + x2
2), ẋ2 = −x1 + αx2(x2

1 + x2
2)

– We can take v(x1, x2) = 1
2(x2

1 + x2
2) which is clearly positive-definite

– v̇ = x1ẋ1 + x2ẋ2 = α(x2
1 + x2

2)
– Therefore the system is asymptotically stable if α < 0 or merely stable if α ≤ 0
– For this example we can also say that if α > 0, the system is unstable since v̇ is positive-definite

Theorem

Lasalle’s extension: If v̇ is only negative-semidefinite, but the only solution to v̇(x) = 0 and ẋ = f(x)
is x = 0, then x = 0 is asymptotically stable.

• The idea is that Lyapunov’s theorem considers all x, but we only care about the ones that satisfy the
equation of motion; so if v̇(x) = 0 is only possible at x = 0 if the equation of motion must be satisfied,
then the system is still asymptotically stable

– Usually when Lasalle’s extension applies, we have a v̇ that is zero when only some of the xi are
zero, but does not require all of them to be zero; so if satisfying ẋ = f(x) with these xi = 0
requires all the other coordinates to be zero, then x = 0 is still asymptotically stable

Example: Feedback Tracking Problem
• Consider a robot with a unicycle model; we want to track a path (xd(t), yd(t), θd(t))

–

ẋd

ẏd

θ̇d

 =

ud cos θd

ud sin θd

ωd


– ud, ωd are the control inputs that will get us exactly to the setpoint in a perfect world; however

since we might have disturbances we need feedback control
• We will do a coordinate transform into the robot coordinate system with axes ξ parallel to the robot

and η perpendicular to it

– ξ =

ξ
η
θ

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
θ

 corresponding to a rotation about the third axis

– ξ̇ = ẋ cos θ + ẏ sin θ + (−x sin θ + y cos θ)θ̇ = ẋ cos θ + ẏ sin θ + ηθ̇
– η̇ = −ẋ sin θ + ẏ cos θ + (x cos θ + y sin θ)θ̇ = −ẋ sin θ + ẏ cos θ + ξθ̇

• We can make the same transformation for the desired coordinates (xd, yd, θd) → (ξd, ηd, θd)
– ξd = xd cos θ + yd sin θ
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– ηd = −xd sin θ + yd cos θ
– ξ̇d = ẋd cos θ + ẏd sin θ + ηdθ̇ = ud cos(θ − θd) + ηdω
– η̇d = −ẋd sin θ + ẏd cos θ + ξdθ̇ = ud sin(θ − θd) − ξdω

• Let the error ex = ξ − ξd, ey = η − ηd, eθ = θ − θd

– We’ve converted a tracking problem to a regulator problem
– We want to send all these error terms to zero

• The error derivatives are ė =

ėx

ėy

ėθ

 =

ud cos eθ + u + eyω
ud sin eθ − exω

ω − ωd


• Our control algorithm will be u = −kxex − ud cos eθ, ω = ωd − kθ sin eθ − udey

– In the end we get a nonlinear function ė = Φ(e)
• Choose a candidate Lyapunov function v(ex, ey, eθ) = 1

2(e2
x + e2

y) + (1 − cos eθ)

– Notice that these terms are energy-like: the 1
2(e2

x + e2
y) is spring energy in 2D and 1 − cos eθ is the

energy of a pendulum; this is usually a good guide to selecting candidate Lyapunov functions
– v̇ = −kxe2

x − kθ sin2 eθ

– If kx, kθ > 0, v̇ is negative definite but only with respect to ex and eθ; this means it is negative-
semidefinite

– Lyapunov’s theorem alone tells us only that the system is stable, but not necessarily asymptotically
so

– We can try applying Lasalle’s extension, if we can show that ex = eθ = 0 =⇒ ey = 0 in order to
satisfy the equation of motion

* If we substitute back in ex = eθ = 0 (and ėx = ėθ = 0) we can prove that ey = 0, so by
Lasalle’s extension this system is asymptotically stable
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