Lecture 7, Sep 28, 2023

Stability for Nonlinear Systems — Lyapunov’s Method

o In general a nonlinear model is characterized by & = f(x,u)
e One approach is locally linearizing using the Jacobian around a particular state and control input
- At = AAx + Bu where Ax = x — x4 and x4 is the set point
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— With this we c;n apply the normal feedback methods with u = —FAxz — Az = (A - BF)Axz
and choose F' appropriately to put the poles in the left-half plane
— Because this a local approximation, it will not work when the state is significantly different from
the linearization point
e Another approach is gain scheduling, where we design a set of gains for a variety of different set points
of the nonlinear system (i.e. “scheduling” the gains according to where you are in state space)
— However this requires a lot of work and more importantly cannot guarantee stability
e To guarantee stability for a nonlinear system, we can use Lyapunov’s method

The solution x(t; xg,tp) to the system & = f(x,t) is said to be stable in the Lyapunov sense (aka
L-stable) if
Ve > 0,30 > 0s.t. ||[Azg|| <0 = Vit >t [|Az| <€

x is asympotitcally stable if tlim |Az| = 0; ezponential stability further requires that ||Axz|| decreases
— 00

exponentially.

Stability in the sense of Lyapunov
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Figure 1: Illustration of Lyapunov stability.

A function v(x) is positive-definite if
Va # 0,v(x) > 0 and v(0) =0

and negative-definite if
Va # 0,v(x) < 0 and v(0) =0

v(x) is positive/negative-semidefinite if v(x) > 0/v(x) < 0 for all x.




Let & = f(z) with an equilibrium at & = 0; if we can find a positive-definite v(x), and o(x) is
negative-semidefinite, then & = 0 is stable. If v(x) is negative-definite, then & = 0 is asymptotically

stable. Note that
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This function v(x) is known as a Lyapunov function.

« v(x) can be thought of as a potential energy surface; since v(x) is negative-(semi)definite, we always
go down the surface, and since v(x) is positive definite, we can’t go down lower than 0, which is the
location of the equilibrium

— If o(x) is merely negative-semidefinite, we can get “stuck” before reaching the equilibrium (e.g. in
a local minimum), but the solution is still stable

e Just because you can’t find a Lyapunov function doesn’t mean the system is unstable!

o However we can invert the result and find a positive-definite ©(x), which would mean the system is
unstable

o Example: &) = x5 + axy (23 + 23), 42 = —21 + axo(2? + 23)

We can take v(x1,z2) = é(x% + 23) which is clearly positive-definite

— 0 = xy@y + Todo = a2 4+ 23)
— Therefore the system is asymptotically stable if o < 0 or merely stable if a <0
— For this example we can also say that if @ > 0, the system is unstable since v is positive-definite

Lasalle’s extension: If ¢ is only negative-semidefinite, but the only solution to v(x) = 0 and & = f(x)
is * = 0, then = = 0 is asymptotically stable.

e The idea is that Lyapunov’s theorem considers all x, but we only care about the ones that satisfy the
equation of motion; so if ¥(x) = 0 is only possible at & = 0 if the equation of motion must be satisfied,
then the system is still asymptotically stable

— Usually when Lasalle’s extension applies, we have a © that is zero when only some of the x; are
zero, but does not require all of them to be zero; so if satisfying & = f(x) with these z; = 0
requires all the other coordinates to be zero, then & = 0 is still asymptotically stable

Example: Feedback Tracking Problem
o Consider a robot with a unicycle model; we want to track a path (zq(t), ya(t),84(t))

Tq ug cos 0y
— |9a| = |ugsinby
04 Wd

— ug,wq are the control inputs that will get us exactly to the setpoint in a perfect world; however
since we might have disturbances we need feedback control
e We will do a coordinate transform into the robot coordinate system with axes £ parallel to the robot
and 7 perpendicular to it

£ cosf sinf 0| |z
— €= |n| = |—sinf cosf 0| |y| corresponding to a rotation about the third axis
0 0 0 1|16

— £ =1dcosf+ysind + (—xsind + ycos )0 = i cos f + g sin 6 + nb
- n=—isinf+ycosb + (xcosb + ysinO)é = —@sinf + gcos + &0

o We can make the same transformation for the desired coordinates (x4, ya,0a) — (4,74, 64)
— &3 =1xgcos0 + ygsinb



Na = —xgsinf 4 y4cos b _
§a = ®qc080 + Pasin O + 140 = ug cos(0 — 04) + naw
Ng = —dgsinb + ggcos0 + €40 = ugsin(0 — 0,) — Eqw

Let the error e; =& —&g,ey =1 —Ng,e0 =0 — 04

We’ve converted a tracking problem to a regulator problem
We want to send all these error terms to zero

[ Uq COS €9 + U + eyWw
The error derivatives are & = |¢é,| = Ug Sin eg — exw
ég W — Wy
Our control algorithm will be u = —k e, — uqcoseg,w = wqg — kgsineg — uge,

In the end we get a nonlinear function é = ®(e)

Choose a candidate Lyapunov function v(ey, ey, €9) = i(ei + 632;) + (1 —cosep)

1
Notice that these terms are energy-like: the f(ei, + 63) is spring energy in 2D and 1 — cos ey is the

energy of a pendulum; this is usually a good guide to selecting candidate Lyapunov functions
0= —kxei — kpsin® ey
If k., kg > 0, ¥ is negative definite but only with respect to e, and ey; this means it is negative-
semidefinite
Lyapunov’s theorem alone tells us only that the system is stable, but not necessarily asymptotically
SO
We can try applying Lasalle’s extension, if we can show that e, = ey =0 = e, = 0 in order to
satisfy the equation of motion

* If we substitute back in e, = eg = 0 (and é, = ég = 0) we can prove that e, = 0, so by

Lasalle’s extension this system is asymptotically stable
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