
Lecture 5, Sep 21, 2023
Introduction to Control Theory
Stability

• Consider the first-order linear time-invariant system ẋ = Ax
– We diagonalize the system so that P −1AP = Λ

– Then we express x as a linear combination of eigenvectors: x(t) =
n∑

α=1
ηα(t)pα

* η are the coordinates
– Substituting it back into the equation of motion, we get η̇α = λαη for α = 1, . . . , n
– Therefore we can solve it as ηα(t) = ηα(0)eλαt

• For this system, we know x = 0 is a solution; when talking about stability, we consider the long-term
behaviour of the differential equation and see if it goes back to 0

– The ηα(t) are disturbances to the system, so we want them to be eliminated eventually
• If Re(λα) < 0 then as t → ∞, we have all ηα → 0 =⇒ x → 0

Definition

A linear system ẋ = Ax is stable if Re(λα) ≤ 0 for all α; it is asymptotically stable if Re(λα) < 0.
This works even for nondiagonalizable matrices by considering their Jordan forms.

For nonlinear systems ẋ = f(x), we can consider local stability in the neightbourhood of a solution
by linearizing the system using the Jacobian,

A = ∂f
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PID Control

Figure 1: Diagram of PID control.

• PID control can be used to address two types of problems: the regulator problem (eliminating
disturbances to the system) and the servo or tracking problem (tracking the output to a trajectory)
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• In control theory the thing being controlled is referred to as the plant, a combination of actuators and
processes

• Consider a simple single-variable, first-order linear system ẋ + σx = u, x(0) = x0 where x is the state
variable and u is the control variable; we want to track the system to xd

– The eigenvalue for this system is −σ (see this by ẋ = −σx), so if σ < 0, this system is unstable
– Define the error e = x − xd and let u = −kpe(t), so ẋ + (σ + kp)x = xd

– For this system, xh = e−(σ+kp)t, xp = kpxd

σ + kp
so the solution is kpxd

σ + kp
+

(
x0 − kpxd

σ + kp

)
e−(σ+kp)t

* Therefore even if σ < 0, as long as we choose a sufficiently high kp, the system can be stable

* However if we let t → ∞ we have x = kpxd

σ + kp
̸= xd, so we have a steady-state error

– Let’s add an integral term: u = −kpe − ki

�
e(τ) dτ

* Substituting in u and differentiating, we have ẍ + (σ + kp)x + kix = kixd

* The general solution is xh = c1eλ1t + c2eλ2t

* The particular solution is just x = xd

* The complete solution is x(t) = xd + c1eλ1t + c2eλ2t

• λ =
−(σ + kp) ±

√
(σ + kp)2 − ki

2
• If Re(λi) < 0, then as t → ∞, x(t) → xd and we have no steady-state error
• Now λ might have an imaginary component, so our system may have oscillations; it could

be underdamped, overdamped or critically damped depending on the gains
* This system is stable if ki > 0, kp + σ > 0

• More generally, our state equation can be ẋ = Ax + Bu
– Our feedback is u = −F x where F is the gain matrix
– This gives ẋ = (A − BF )x
– We can now make this system stable by finding an F that modifies the eigenvalues of A

* Whether we can always find such an F is related to the controllability of the system
• Even more generally, for nonlinear systems ẋ = f(x, u), we can choose to linearize locally as before, or

we can try heuristic feedback, with either linear or nonlinear control
• Now consider a second-order plant ẍ + σẋ + ηx = u

– We will also add a derivative term: u(t) = −kpe(t) − kdė(t) − ki

�
e(τ) dτ

– Substituting this and differentiating, we will get a third order differential equation
– This gives us a new set of stability requirements

Figure 2: Example response of a PID controller.
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• Response characteristics:
– Rise time: the amount of time for the output to approach the input

* There is no set convention on this; often it’s defined as the time from 0 to 100% of the desired
output, sometimes it’s 10% to 90%

– Overshoot: the amount over the desired output that the maximum value is
– Settling time: time to reach and stay within a certain band δ of the desired output
– Steady-state error: remaining error as t → ∞

• The gains change the characteristics of the response; depending on the system, different characteristics
may be desired

Figure 3: Effect of increasing different gains on a PID controller.

Figure 4: Ziegler-Nichols tuning sequence.

• The Ziegler-Nichols method is one among many methods to tune PID gains:
1. Suppress the integral and derivative terms completely
2. Create a small disturbance by suddenly changing the setpoint
3. Increase kp until the system is oscillating with constant amplitude
4. Record the gain value as ku, the oscillation period Tu, and refer to the table to set kp, ki, kd

Figure 5: Ziegler-Nichols table of gains.

• PID control is prone to common problems:
– Noise in the derivative: derivatives are typically numerically calculated and can be quite noisy

* This can be mediated by attaching a low-pass filter on the signal to remove high-frequency
components

– Integral windup: error can build up in the integral term, making it overwhelm the other control
terms

* This can be mediated by removing the i term after the desired value is reached, capping the
error integral, or reinitializing the i term

– Deadband: the region where the control input does not affect the actuator (e.g. due to friction)
* This can be mediated by commanding a minimum control input when in the deadband so the

control is not useless
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Applications in Robotics

• Consider robot with a bicycle model; we want to drive it to a desired goal point (xd, yd)
– Proportional control: v = −kp,v

√
(x − xd)2 + (y − yd)2, θd = tan y − yd

x − xd
, γ = −kp,γ(θ − θd)

• What if we wanted to follow a line ax + by + c = 0?
– We can measure the crosstrack error by δ = ax + by + c√

a2 + b2
(normal distance to line)

– Then γδ = −kp,δδ makes us steer the robot towards the line
– But now we want to keep the robot on the line, so let θd = tan−1

(
−a

b

)
and γθ = −kp,θ(θ − θd)

steers us towards the line
– These two terms are combined, and a fixed speed is added for this simple proportional control

• What if we wanted to follow a path?
– Let e =

√
(x − xd)2 + (y − yd)2 − d, and then apply PI control on the velocity using this error

* In effect this follows a set point at a distance d ahead all the time
* This is because without the −d, e will always be positive and so we will get integral wind-up,

where the integral term overwhelms the control
– The steering can be controlled using the same way as when moving to a goal point

• Consider a robot with a unicycle model; we want to move it to a pose (xd, yd, θd)
– We will transform our variables (x, y, θ) to (ρ, α, β), where ρ is the distance to the setpoint, α is

the angle from the line that connects directly to the target
* ρ =

√
∆2

x + ∆2
y

* α = tan−1 ∆y

∆x
− θ

* β = −θ − α
– We want to regulate (ρ, α, β) = (0, 0, 0)

* Apply proportional control on v with ρ, and ω with α and β
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