
Lecture 4, Sep 19, 2023
Motion of Robots

• We will concentrate primarily on rolling, i.e. robots with wheels
• Steering models:

– Bicycle steering: traction wheel in rear, steering wheel in front
* Tricycle steering: the rear wheel is unpowered, while the front steering wheel is powered

– Differential steering: two independently controlled wheels, vary speed to get desired curvature
* Tripod differential steering: differential steering with an unpowered omnidirectional wheel in

front for support
* Skid-steering: each side is controlled together

– Directed differential steering: differential steering aided by a steering wheel
– Ackermann steering: two differentially operated wheels at the back and two connected steering

wheels at the front
• Wheels can also be compound:

– Mecanum wheels: wheels with angled rollers on the surface
* Through moving the wheels in different directions, motion in any of the 4 directions or rotation

can be achieved
* The wheels produce forces in diagonal directions; combining these forces results in a net force

in the desired direction
– Omni wheels: like the Mecanum wheel, but the rollers are perpendicular instead of diagonal

Figure 1: Mecanum wheels in translation.

Figure 2: Omni wheels used on a vehicle.

• Holonomic constraint: a vehicle is holonomic if the vehicle’s geometry does not constrain its motion
(i.e. it can move in any direction, regardless of which direction it’s facing)
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– Mecanum and omni drive are holonomic, but Ackermann is not
– We will formally define this in AER301

Kinematical Models of Motion
• The pose of a robot is its position and orientation

– For now we will work in 2D, with position being x, y and orientation being θ, so the pose is

x =

x
y
θ


• For a simple unicycle model, θ is the angle of the wheel and x, y are the position of the wheel on the

ground
– ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω

– x =

v cos θ
v sin θ

ω


–

ẋ
ẏ

θ̇

 =

cos θ 0
sin θ 0

0 1

 [
v
ω

]
=⇒ ẋ = Bu

– x is the state and u is the system input

Figure 3: Bicycle model derivation.

• For a bicycle model, refer to the diagram above
– We will fix our reference point to the rear wheel; θ is the angle the rear wheel makes with the

horizontal axis
– ẋ = v cos θ, ẏ = v sin θ as usual
– To find θ̇, we extend a perpendicular line from the wheels to intersect at the instantaneous center

of rotation
– v = R1θ̇, l

R1
= tan γ =⇒ θ̇ = v

l
tan γ

– The control inputs are v and γ
– Notice that this model is now nonlinear due to the tangent on γ and multiplication by v

• For differential steering our control inputs are γ̇r, γ̇l, which are the rotational rates of the two wheels
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Figure 4: Differential steering derivation.

– v = r(φ̇r + φ̇l)
2 (velocity is simply the average)

– ω = r(φ̇r − φ̇l)
b

– We can then put this into the unicycle model to obtain the final model

– ẋ =

ẋ
ẏ

θ̇

 =


1
2r cos θ

1
2r cos θ

1
2r sin θ

1
2r sin θ

r

b
−r

b


[
φ̇r

φ̇l

]

Wheel Models
• To generalize our motion models, we want to derive the general model for a standard wheel

Figure 5: Derivation of the standard wheel model.

• Let
⃗
Fg be the global reference frame, let

⃗
Fr be the vehicle reference frame and

⃗
Fw be the wheel

reference frame
– For all 3 frames the 3rd vector points up
–

⃗
r1 is parallel to the vehicle and

⃗
r2 is normal to it

–
⃗
w1 is normal to the wheel and

⃗
w2 is parallel to it

– Since everything is in the same plane, we have Crg = C3(θ), Cwr = C3(α + β)
• We’ll use the notation that

⃗
ρXY being the position of point X measured in frame Y (if Y is omitted, it

is the global frame)
• For any wheel, the kinematics of the vehicle is defined by the constraints of the wheel

– We will assume that the wheel does not slip, so it cannot move in the direction of
⃗
w1

* This imposes a constraint
⃗
vA ·

⃗
w1 = 0, that is,

⃗
vA has no velocity in the direction of

⃗
w1
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– The wheel can roll freely in the direction of
⃗
w2

* This means means that
⃗
vA ·

⃗
w2 = −rφ̇

• We want
⃗
vA = d

dt⃗
ρA

∣∣∣∣
⃗
Fg

= d
dt⃗

ρP

∣∣∣∣
⃗
Fg

+ d
dt⃗

ρAP

∣∣∣∣
⃗
Fg

=
⃗
vP + d

dt⃗
ρAP

∣∣∣∣
⃗
Fr

+
⃗
ωrg ×

⃗
ρAP

–
⃗
vP =

⃗
FT

g

ẋ
ẏ
0

 =
⃗
FT

r Crg

ẋ
ẏ
0

 =
⃗
FT

r

ur

vr

0


–

⃗
ωrg is the angular velocity of

⃗
Fr with respect to

⃗
Fg so it’s simply

⃗
FT

r

0
0
θ̇


–

⃗
ρAP =

⃗
FT

r

l cos α
l sin α

0

 so it has a derivative of 0

– Therefore we can get
⃗
vA =

⃗
vD +

⃗
ωrg ×

⃗
ρAP and then express it in frame

⃗
FT

w

* This works out to be
⃗
FT

w

 uR cos(α + β) + vR sin(α + β) + lθ̇ sin β

−uR sin(α + β) + vR cos(α + β) + lθ̇ cos β
0

 =

 0
−rφ̇

0

 (due to the

constraints) where uR, vR are the components of the robot’s velocity along and normal to its
frame

• The two equations
{

uR cos(α + β) + vR sin(α + β) + lθ̇ sin β = 0
−uR sin(α + β) + vR cos(α + β) + lθ̇ cos β = −rφ̇

define the wheel kinematics
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