Lecture 3, Sep 14, 2023

Taxonomy of Robotics

- A common paradigm is that of "sense, plan, act" which we will use in this course
 - Sometimes these stages are combined with no clear boundaries, such as neural networks or learning-based paradigms
- The typical chain of processing is perception \rightarrow information processing \rightarrow mapping \rightarrow localization \rightarrow planning \rightarrow navigation \rightarrow action
 - Perception is done through basic sensors such as odometry, gyroscopes, IMUs, etc and rich sensors such as cameras, lidars, tactile sensors, etc
 - Information processing involves reducing noise, antialiasing, and fusion of sensor measurements
 - Mapping involves locating features and landmarks and creating a map of the environment
 - Localization uses the map to determine where we are on the map with techniques such as Kalman filtering, particle filtering (Monte Carlo) or Bayesian localization
 - * Localization and mapping can be combined into SLAM (simultaneous localization and mapping), which solves the chicken-and-egg problem
 - Planning involves pathfinding, with techniques such as Voronoi diagrams, cell decomposition and potential fields
 - Navigation involves following the planned path; it can be methodical and map-based or behaviour-based which is reactive (e.g. behaviour trees)
 - Action directly controls actuators, e.g. PID control
- Levels of autonomy:
 - Assistant: fully supervised and teleoperated
 - * Unilateral teleoperation involves no feedback, bilateral has position feedback only and multilateral has force feedback as well
 - * Teleoperation faces issues with interfacing, time delays and flexibility
 - Apprentice: able to execute low-level tasks unsupervised
 - Associate: able to execute elements of tasks autonomously (but cannot break down large tasks)
 - Agent: fully autonomous