Lecture 20, Nov 23, 2023
Geometry in SE(3)

o We can represent the position of the end-effector using SE(3) transformations
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- u® = (H Ti1> "™ (note the ™! brings us from the last joint to the end-effector)
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o The orientation of the end-effector is given by C®® = H Ci_1,
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e We can combine both into the pose: T = H Ti—1
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* We added this to bring us from the last joint to the end-effector

Inverse Kinematics

e Technically inverse “geometry”
o In general, 7°° = f,.(q),0° = fo(q) = p°° = f(q) where p°® is the end-effector pose
— Given g, solving for p®® is the problem of forward kinematics
— Given p®®, solving for q is the problem of inverse kinematics
 Solving inverse kinematics often requires numerical techniques, and often has multiple (possibly infinite)
solutions
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Figure 1: Example of a two-link system where multiple solutions exist.

« For the example above, we can solve for the angles using the cosine law; the cos™! gives two possible
solutions, one for positive 3 and one for negative 6o

e A 6-DoF robotic arm with revolute joints can have as many as 16 solutions depending on the link
lengths

o Incremental solution technique: given a solution at g corresponding to p®®, what if we changed p°® by
a small Ap®°?
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— Therefore Ap®® = Age| = J(g)Aq (since for small angular displacements only, we can directly
multiply by At to get A¢)

— Notice that this look exactly like the kinematical relation; we can now use the pseudoinverse to
solve for it
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Figure 2: Example of a system with even more solutions.

o Aq=J(q)Ap* + (1 — J'J)b where JT = JT(JJT)~!
— But this doesn’t quite do it because the inverse can be big, even when Ap®® is small
o The damped least-squares technique (aka Levenberg-Marquardt method) is a variation on the incremental
technique
~ Minimize ||Ap® — J(q)Aq|* + \?||Aq]?
— A is a damping term which makes sure that our Ags are small — this is known as regularization
* If we're talking about a pose, we can use T and use a matrix norm
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* Therefore this is satisfied by AT Ax = ATb — [J] [J] Aq = [J] [Ap ]

— This is equivalent to minimizing

b — Az]|

, which is like a linear regression minimizing
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— This reduces to Aq = (J*J + X?1)"'JT Ap®e
* The addition of the A1 term regularizes the solution and keeps the inverse small even when
JTJ is close to singular
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Figure 3: Mapping from workspace to configuration space.



o How do we get from work (task) space to configuration space?

e Recall that C, the configuration manifold, is the set of all possible points for the manipulator; €2 is all
the parts of the configuration manifold occupied by obstacles, barriers and prohibited areas; then the
free world manifold is W = C\§2

e For a simple manipulator like the 2-link manipulator in 2 dimensions, we can calculate exactly where
the links are and check that points on the links do not overlap obstacles

e In general, an analytical expression for this might be impossible to obtain, so we must resort to numerical
methods

e The simplest way is to test point by point whether the manipulator at a given point in configuration
space intersects obstacles

— Take a point q in C' and determine all the points in the manipulator, M(q)
— Make sure that M(q) N O; work = &, then q is accessible in C

e Path planning techniques for mobile robots can also be used for manipulators in configuration space,

e.g. road-map methods, Dijkstra’s/A*, potential fields, RRTs

Manipulability

e How can we measure quantitatively the ability of a manipulator to undertake a task? Can we provide a
measure of the maneuverability or manipulability for a manipulator?
e We can do this kinematically or dynamically
e Consider an n-link manipulator; taking just the velocity partition, we have v = J (”)(q)i] (we will drop
the superscript from here on)
« Consider the set of all possible end-effector velocities v realizable by joint rates contained by ||g|* < 1;
intuitively, the larger this set, the more “manipulable” the manipulator is
— Note this requires some weighting and/or non-dimensionalization if both revolute and prismatic
joints are involved
— This set will turn out to be an ellipsoid, which is called the manipulability ellipsoid
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Figure 4: Manipulability ellipsoid.

o Recall that away from a singularity, ¢ = J'v + (1 — J'J)b
— This gives ||g||> = ¢"¢ > vT (I T JTw
— Therefore the manipulability ellipsoid is v” (J)TJTv < 1
o The principal axes of this ellipsoid represent how fast the ellipsoid can move
— The size is given by the eigenvalues of (J T)TJ f (like the energy/momentum ellipsoid derivation)
— Note that substituting in the definition for J', we have (JH)TJ" = (JJT)~!
o Consider the SVD of J: J =UXV7T



— For us, m < n so X has several zero columns at the end
Note that the singular values are the square roots of the eigenvalues of JJT
— Then J' = JT(JJ = vxTuT(uzvivyiuh) - = vl (zxh) Ut
And (JHTJT = (JJD)=UE=?)lUT
~ So vT(JNJTv = vTU(EXT)"'UTv < 1 gives the ellipsoid
— Let z = U v, then we have 27 (ZX7) 12 =1
2 2 2
— So in terms of z, we get 2—12 + 2—22 + Z—% =1 — an ellipsoid with axes o1, 09,03
o o5 03
Given the ellipsoid, we can define several different measures of manipulability:

— wi(q) = 010203 = \/m (ellipsoid volume)

— wa(q) = Fmin (ellipsoid stretching)

- ws(q) = g::;x (length of shortest axis)

— wa(q) = (01020’3)% = wlé (q) (geometric mean of the axes)
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Figure 5: Manipulability ellipsiods for the 2-link manipulator.

For the 2-link manipulator, we have w = |det(J)| = [*|sin fy]

— Notice that this is not dependent on 6,

— The ellipsoid is rounder when we have intermediate values of 05

— At the singularities, the ellipsoid collapses to a line, so the manipulability also drops to 0
Recall that 7 = J7 f, so we can address manipulability from a force/torque perspective using this dual
relation

~ Consider |n|I* <1

— Going through the same steps yields fTJJTf =1 = o2f2 + o5f2 + U%fg2 =1

— Notice that this flips the intercepts of the ellipsoid

— e.g. in the diagram below, larger kinematics ellipsoids result in smaller force ellipsoids
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Figure 6: Force and kinematic ellipsiods for the 2-link manipulator.
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