
Lecture 20, Nov 23, 2023
Geometry in SE(3)

• We can represent the position of the end-effector using SE(3) transformations

– uee =
(

n∏
i=1

Ti−1

)
un+1

n (note the un+1
n brings us from the last joint to the end-effector)

– In matrix form:
[
ree

1

]
=
[
Ci−1,i ρi

i−1
0T 1

] [
ρn+1

n

1

]
• The orientation of the end-effector is given by Cee =

n∏
i=1

Ci−1,i

• We can combine both into the pose: T ee =
n+1∏
i=1

Ti−1,i

– T ee =
[
C0,n ree

0T 1

]
– Tn,n+1 =

[
1 ρn+1

n

0T 1

]
* We added this to bring us from the last joint to the end-effector

Inverse Kinematics
• Technically inverse “geometry”
• In general, ree = fr(q), θee = fθ(q) =⇒ pee = f(q) where pee is the end-effector pose

– Given q, solving for pee is the problem of forward kinematics
– Given pee, solving for q is the problem of inverse kinematics

• Solving inverse kinematics often requires numerical techniques, and often has multiple (possibly infinite)
solutions

Figure 1: Example of a two-link system where multiple solutions exist.

• For the example above, we can solve for the angles using the cosine law; the cos−1 gives two possible
solutions, one for positive θ2 and one for negative θ2

• A 6-DoF robotic arm with revolute joints can have as many as 16 solutions depending on the link
lengths

• Incremental solution technique: given a solution at q corresponding to pee, what if we changed pee by
a small ∆pee?

–
[

vee

ωee

]
= J(q)q̇ =⇒

[
∆tvee

∆tωee

]
= J(q)∆q

– Therefore ∆pee =
[

∆ree

∆ϕee

]
= J(q)∆q (since for small angular displacements only, we can directly

multiply by ∆t to get ∆ϕ)
– Notice that this look exactly like the kinematical relation; we can now use the pseudoinverse to

solve for it
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Figure 2: Example of a system with even more solutions.

• ∆q = J†(q)∆pee + (1 − J†J)b where J† = JT (JJT )−1

– But this doesn’t quite do it because the inverse can be big, even when ∆pee is small
• The damped least-squares technique (aka Levenberg-Marquardt method) is a variation on the incremental

technique
– Minimize ∥∆pee − J(q)∆q∥2 + λ2∥∆q∥2

– λ is a damping term which makes sure that our ∆qs are small – this is known as regularization
* If we’re talking about a pose, we can use T and use a matrix norm

– This is equivalent to minimizing
∥∥∥∥[∆pee

0

]
−
[

J
λ1

]
∆q

∥∥∥∥, which is like a linear regression minimizing

∥b − Ax∥

* Therefore this is satisfied by AT Ax = AT b =⇒
[

J
λ1

]T [
J
λ1

]
∆q =

[
J
λ1

]T [∆pee

0

]
– This reduces to ∆q = (JT J + λ21)−1JT ∆pee

* The addition of the λ1 term regularizes the solution and keeps the inverse small even when
JT J is close to singular

Planning

Figure 3: Mapping from workspace to configuration space.
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• How do we get from work (task) space to configuration space?
• Recall that C, the configuration manifold, is the set of all possible points for the manipulator; Ω is all

the parts of the configuration manifold occupied by obstacles, barriers and prohibited areas; then the
free world manifold is W = C\Ω

• For a simple manipulator like the 2-link manipulator in 2 dimensions, we can calculate exactly where
the links are and check that points on the links do not overlap obstacles

• In general, an analytical expression for this might be impossible to obtain, so we must resort to numerical
methods

• The simplest way is to test point by point whether the manipulator at a given point in configuration
space intersects obstacles

– Take a point q in C and determine all the points in the manipulator, M(q)
– Make sure that M(q) ∩ Oi,work = ∅, then q is accessible in C

• Path planning techniques for mobile robots can also be used for manipulators in configuration space,
e.g. road-map methods, Dijkstra’s/A∗, potential fields, RRTs

Manipulability
• How can we measure quantitatively the ability of a manipulator to undertake a task? Can we provide a

measure of the maneuverability or manipulability for a manipulator?
• We can do this kinematically or dynamically
• Consider an n-link manipulator; taking just the velocity partition, we have v = J (v)(q)q̇ (we will drop

the superscript from here on)
• Consider the set of all possible end-effector velocities v realizable by joint rates contained by ∥q̇∥2 ≤ 1;

intuitively, the larger this set, the more “manipulable” the manipulator is
– Note this requires some weighting and/or non-dimensionalization if both revolute and prismatic

joints are involved
– This set will turn out to be an ellipsoid, which is called the manipulability ellipsoid

Figure 4: Manipulability ellipsoid.

• Recall that away from a singularity, q̇ = J†v + (1 − J†J)b
– This gives ∥q̇∥2 = q̇T q̇ ≥ vT (J†)T J†v
– Therefore the manipulability ellipsoid is vT (J†)T J†v ≤ 1

• The principal axes of this ellipsoid represent how fast the ellipsoid can move
– The size is given by the eigenvalues of (J†)T J† (like the energy/momentum ellipsoid derivation)
– Note that substituting in the definition for J†, we have (J†)T J† = (JJT )−1

• Consider the SVD of J : J = UΣV T
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– For us, m < n so Σ has several zero columns at the end
– Note that the singular values are the square roots of the eigenvalues of JJT

– Then J† = JT (JJT )−1 = V ΣT UT (UΣV T V ΣT UT )−1 = V ΣT (ΣΣT )−1UT

– And (J†)T J† = (JJT )−1 = U(ΣΣT )−1UT

– So vT (J†)J†v = vT U(ΣΣT )−1UT v ≤ 1 gives the ellipsoid
– Let z = UT v, then we have zT (ΣΣT )−1z = 1

– So in terms of z, we get z2
1

σ2
1

+ z2
2

σ2
2

+ z2
3

σ2
3

= 1 – an ellipsoid with axes σ1, σ2, σ3

• Given the ellipsoid, we can define several different measures of manipulability:
– w1(q) = σ1σ2σ3 =

√
det(J(q)JT (q)) (ellipsoid volume)

– w2(q) = σmin

σmax
(ellipsoid stretching)

– w3(q) = σmin (length of shortest axis)
– w4(q) = (σ1σ2σ3) 1

3 = w
1
3
1 (q) (geometric mean of the axes)

Figure 5: Manipulability ellipsiods for the 2-link manipulator.

• For the 2-link manipulator, we have w = |det(J)| = l2|sin θ2|
– Notice that this is not dependent on θ1
– The ellipsoid is rounder when we have intermediate values of θ2
– At the singularities, the ellipsoid collapses to a line, so the manipulability also drops to 0

• Recall that η = JT f , so we can address manipulability from a force/torque perspective using this dual
relation

– Consider ∥η∥2 ≤ 1
– Going through the same steps yields fT JJT f = 1 =⇒ σ2

1f2
1 + σ2

2f2
2 + σ2

3f2
3 = 1

– Notice that this flips the intercepts of the ellipsoid
– e.g. in the diagram below, larger kinematics ellipsoids result in smaller force ellipsoids

Figure 6: Force and kinematic ellipsiods for the 2-link manipulator.
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