Lecture 19, Nov 21, 2023

Manipulator Examples

Figure 1: Example question.

- For the PRR manipulator above, with joint variables d_1, θ_2, θ_3 (where θ_3 is measured relative to the second link), determine:
 - Displacement (x, y, z) of the end-effector
 - * We can do this by inspection from the geometry

*
$$\boldsymbol{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a(1 + \cos\theta_3)\cos\theta_2 \\ a(1 + \cos\theta_3)\sin\theta_2 \\ d_1 + a\sin\theta_3 \end{bmatrix}$$

- The Jacobian $J^{(v)}$, with the translational velocity only
 - * Since we have $r(d_1, \theta_2, \theta_3)$ we can directly differentiate to find the Jacobian

$$\mathbf{J}^{(v)} = \begin{bmatrix} 0 & -a(1+\cos\theta_3)\sin\theta_2 & -a\sin\theta_3\cos\theta_2\\ 0 & a(1+\cos\theta_3)\cos\theta_2 & -a\sin\theta_3\sin\theta_2\\ 1 & 0 & a\cos\theta_3 \end{bmatrix}$$

- Singularities of the system
 - * The singularity condition is $det(JJ^T) = 0$, which for a square J is equivalent to det J = 0
 - * Since the first column has only a single 1, the determinant is given by the determinant of the 2x2 matrix at the top right
 - * det $J = a(1 + \cos \theta_3) \sin \theta_2 a \sin \theta_3 \sin \theta_2 + a \sin \theta_3 \cos \theta_2 a(1 + \cos \theta_3) \cos \theta_2$ $= a^2(1 + \cos \theta_3) \sin \theta_3 \sin^2 \theta_2 + a^2(1 + \cos \theta_3) \sin \theta_3 \cos^2 \theta_2$ $= a^2 \sin \theta_3(1 + \cos \theta_3)$ * This gives us $\theta_1 = 0, \pi$
 - * This gives us $\theta_3 = 0, \pi$
 - * Intuitively, at $\theta_3 = 0$, the last 2 links are aligned; this means we need an infinite $\dot{\theta}_3$ to get a finite EE velocity; at $\theta_3 = \pi$ the last links are folded on each other, so any angle of θ_2 results in the same EE position, and we also have the infinite velocity issue; additionally \dot{d}_1 results in the same \dot{z} as $\dot{\theta}_3$
 - Notice $\theta_3 = \pi$ is a double root, which corresponds to the two different interpretations
- The required joint force and torques required to deliver a force f^{ee} applied in the downward direction, when $d_1 = a, \theta_2 = 0, \theta_3 = -45^{\circ}$
 - * Recall: $\boldsymbol{\eta} = \boldsymbol{J}^T \boldsymbol{f}$

* In this configuration,
$$\boldsymbol{J} = \begin{bmatrix} 0 & 0 & \frac{a\sqrt{2}}{2} \\ 0 & a\left(1 + \frac{\sqrt{2}}{2}\right) & 0 \\ 1 & 0 & a\frac{\sqrt{2}}{2} \end{bmatrix}$$

* $\boldsymbol{f} = \begin{bmatrix} 0 \\ 0 \\ -f^{ee} \end{bmatrix}$
* Therefore $\boldsymbol{\eta} = \begin{bmatrix} -f^{ee} \\ 0 \\ -\frac{a\sqrt{2}}{2}f^{ee} \end{bmatrix}$