Lecture 18, Nov 16, 2023

Manipulator Jacobians
Velocity

0; joint is revolute
« Each joint gives us one degree of freedom ¢; = ¢ ' ‘] o ) ]
d; joint is prismatic
o We want to know how, given a desired velocity of the end-effector, we can set the joint rates to achieve
that velocity

o The manipulator Jacobian relates the end-effector velocity and angular velocity: v = J(q)q
ee

- v = Zoee] is the velocity (including translational and angular) velocity of the end-effector

0
* Note that this is expressed in frame 0, which is our world/inertial frame

— q are the joint rates

— J(g) € R™*™ where m < 6 and n is the number of joints; in general it is a function of the current
joint states

J(v) (Q)

o Partition the Jacobian as J(q) = [J(‘”)(q)

} , where one part is for linear velocity and the other part is

for angular
— Given an expression for the end-effector position we can simply differentiate it to get the transla-
tional velocity Jacobian

aree
~ JW(q) = i where 73 is the position of the end-effector
— Angular Velo(nty however is more complicated since it’s not the direct derivatives of the orientation
variables

. oct
o For angular velocity (w§®)™ Co, nCOTn Z Con O‘n G = Z(er)xqqt

— Cy,; is the rotation matrix from frame ¢ to the world frame
— Therefore wy Z vf; and so J@ = 2R 2

7

e Using DH parameters

— Let p = Z pk+1 be the relative position of O; from O;

— Let o_Jj = Zc_g’,j"’l be the angular velocity of link ¢ with respect to link j

j—1
— Let Cy; = H C'i k+1 be the rotation matrix from frame j to frame ¢
k=1
n+1" ee __ ., n
o Then y** — £o and W = wy

— Note the velocity is to n 4+ 1 because we want the velocity of the end-effector (i.e. end of the last
link), but the angular velocity is of the last link so it’s to n
— Note p”l Flpittwi | = Flw! |, ie pi™ and w!_,; are both expressed in frame i
o For the angular Veloc1ty part
i ;z; revolute joint
T W1 = . S
0 prismatic joint

— Z 5192,

* Note g; is 1 if the JOlnt is revolute, otherwise 0

— .F 13 — (4)0 ZgiCO,i]-Séi



— The Jacobian is then J®) = [j%“) jff)} where j“) = £,Cp.15

i
o For the translational velocity part:
n
Sut=ptt =)
i=0
. e ) )
_ 8;Jrl :Bz+1- _’_%6 % £;+1 -
* Recall p;+1 = dz%z + a;T; — p2+1 = (1 — 81)d1§1 + dzgﬂo + GJZ@:;
* But 27 = 27 =0

— Therefore p::’Ll. = (1—&;)dizi +wf x pit!
~ Substitute Wy = ¥  exbrzk
k=1 _
~ So = Z |}1 - 5i)di§i + Zekékék % p§+1]
i=1 k=1 i
— This reduces to v°¢ = Z [(1- 5i)di§i + 5iéi§i X P?H}
i=1
— In the world frame, v§® = Z [(1 - Ei)dico,ilis + Eiéico,il?fp?ﬂ}
i=1
_ Therefore J®) = [ﬁ”) j};’)} where ") = (1 —£;)Cy,13 + £,Co 1 15 -+
Co,i15 pitt
(v) 073 Pi revolute joint
_ . ) i Co,il3
o J= [31 ]n] where j; = |l | =
2; Co’ilg . R
0 prismatic joint

Force

« Define the joint control force/torque as 7! _, = 1;2; = {Ti%i rex.lolute' J?l?t
- - fiz; prismatic joint
— This force or torque is between links ¢ — 1 and ¢
o We can obtain the actual control input force by taking the dot product of the joint forces with z;, since
only 1 of 6 degrees of freedom of force is due to the input and the other are due to constraints
e How do we relate the control input force to the force delivered at the end-effector?
o Consider a free-body segment between links ¢ and n; assume this is static (i.e. ignoring inertial forces)
— The interlink force and torque are 7/_; = 7 + BZH_I X fee and f;_l = f"”, derived from the FBD
_ ee n+1 ee P
e The control inputs are therefore n; = {Ti Sl T Zicp X f. re\./olute. JO.H?t
fi=z- fe prismatic joint
~ Expressed in world frame: 1; — {TZ' = (CO,ilg)TTOee + (C’o,il;’< p?ﬁLl)T‘fge revolute joint
fi= (Co,i]_g)T i prismatic joint

ee

This gives n = J7 (q)f where f = [T%e} , where the Jacobian is the same as before
0

Acceleration



Kinematics

e Forward kinematics is finding v given g and g; this is easy if we have the Jacobian
« Inverse kinematics is the problem of finding ¢ given v (and integrating for g); in general this is much
more challenging
« If the Jacobian is square and invertible, then we can simply find ¢ = J _l(q)v
o If it is not invertible, assuming m < n (i.e. we have more joints/DoF than spacial dimensions), we can
try using the pseudoinverse
— Provided rank J = m, JJ7T is invertible
— Define the (Moore-Penrose) pseudoinverse J* = JT(JJT)™! so JJT =1 € R™*™
o Then in general if rank J = m, ¢ = Jiv + (1 — JTJ)b, for any b € R™ (i.e. we have an infinite number
of solutions)
— Note that (1 — JTJ)b € ker J
— Take b = 0 if we want to minimize the joint rates
e What about square but non-invertible J or rank J < m?
— In this case we have a singularity — we cannot solve for ¢ given an arbitrary v
e At singularities, configurations with motion in certain directions may be unattainable
— These often occur at boundaries of the workspace
— Finite end-effector rates might imply infinite joint rates
— Finite joint forces/torques might imply infinite end-effector forces and torques

A singularity occurs at q when rank J(q) < m, or equivalently det(J(q)J(q)”) = 0, where m is the
dimension of the workspace.

—:'55. —————— - singularuty
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Figure 1: Simple singularity example.

e Singularities for the above arm occur at 63 = 0,7 or 63 = —20,
— At 03 = —26,, the end-effector will be on the z axis, so any #; gives us the same end-effector
position; therefore we can’t solve for 6,
— At 03 = 0, the links are in a straight line, so we can’t get any motion along that line
— At 03 = 7, the arm is folded back on itself, so again we can’t get any motion on that line

e Translation and rotation of an end-effector can be theoretically uncoupled if we have a wrist-partitioned
arm, if:
— Last 3 joints are revolute with axes passing through the common centre £
— Successive axes are not parallel
— F can be placed arbitrarily in position space
e Practically however the end-effector is always displaced from F



Figure 2: Singularity example.

Figure 3: A wrist-partitioned arm.
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