
Lecture 18, Nov 16, 2023
Manipulator Jacobians
Velocity

• Each joint gives us one degree of freedom qi =
{

θi joint is revolute
di joint is prismatic

• We want to know how, given a desired velocity of the end-effector, we can set the joint rates to achieve
that velocity

• The manipulator Jacobian relates the end-effector velocity and angular velocity: v = J(q)q̇

– v =
[

vee
0

ωee
0

]
is the velocity (including translational and angular) velocity of the end-effector

* Note that this is expressed in frame 0, which is our world/inertial frame
– q̇ are the joint rates
– J(q) ∈ Rm×n where m ≤ 6 and n is the number of joints; in general it is a function of the current

joint states

• Partition the Jacobian as J(q) =
[

J (v)(q)
J (ω)(q)

]
, where one part is for linear velocity and the other part is

for angular
– Given an expression for the end-effector position we can simply differentiate it to get the transla-

tional velocity Jacobian
– J (v)(q) = ∂ree

0
∂qT

where ree
0 is the position of the end-effector

– Angular velocity however is more complicated since it’s not the direct derivatives of the orientation
variables

• For angular velocity (ωee
0 )×C0,nĊT

0,n =
∑

C0,n
∂CT

0,n

∂qi
q̇i ≡

∑
i

(νee
i )×q̇i

– C0,i is the rotation matrix from frame i to the world frame
– Therefore ωee

0 =
∑

i

νee
i q̇i and so J (ω) =

[
νee

1 · · · νee
n

]
• Using DH parameters:

– Let
⃗
ρj

i =
j−1∑
k=i⃗

ρk+1
k be the relative position of Oj from Oi

– Let
⃗
ωj

i =
j−1∑
k=i

⃗
ωk+1

k be the angular velocity of link i with respect to link j

– Let Cij =
j−1∏
k=i

Ck,k+1 be the rotation matrix from frame j to frame i

• Then
⃗
vee −

⃗
ρn+1

0
· and

⃗
ωee =

⃗
ωn

0
– Note the velocity is to n + 1 because we want the velocity of the end-effector (i.e. end of the last

link), but the angular velocity is of the last link so it’s to n
– Note

⃗
ρi+1

i =
⃗
FT

i ρi+1
i ,

⃗
ωi

i−1 =
⃗
FT

i ωi
i−1, i.e. ρi+1

i and ωi
i−1 are both expressed in frame i

• For the angular velocity part:

–
⃗
ωi

i−1 =
{

θ̇i
⃗
zi revolute joint

⃗
0 prismatic joint

–
⃗
ωee =

n∑
i=1

εiθ̇
⃗
zi

* Note εi is 1 if the joint is revolute, otherwise 0

–
⃗
zi =

⃗
FT

i 13 =⇒ ωee
0 =

n∑
i=1

εiC0,i13θ̇i
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– The Jacobian is then J (ω) =
[
j

(ω)
1 · · · j(ω)

n

]
where j

(ω)
i = εiC0,i13

• For the translational velocity part:

–
⃗
vee =

⃗
ρn+1

0
· =

n∑
i=0 ⃗

ρi+1
i

·

–
⃗
ρi+1

i

· =
⃗
ρi+1

i

◦ +
⃗
ωi

0 ×
⃗
ρi+1

i

* Recall
⃗
ρi+1

i = di
⃗
zi + ai

⃗
xi =⇒

⃗
ρi+1

i

◦ = (1 − εi)ḋi
⃗
zi + di

⃗
z◦

i + ai
⃗
x◦

i

* But
⃗
x◦

i =
⃗
z◦

i =
⃗
0

– Therefore
⃗
ρi+1

i

· = (1 − εi)ḋi
⃗
zi +

⃗
ωi

0 ×
⃗
ρi+1

i

– Substitute
⃗
ωi

0 =
i∑

k=1
εkθ̇k

⃗
zk

– So
⃗
vee =

n∑
i=1

[
(1 − εi)ḋi

⃗
zi +

i∑
k=1

εkθ̇k
⃗
zk ×

⃗
ρi+1

i

]

– This reduces to
⃗
vee =

n∑
i=1

[
(1 − εi)ḋi

⃗
zi + εiθ̇i

⃗
zi ×

⃗
ρn+1

i

]
– In the world frame, vee

0 =
n∑

i=1

[
(1 − εi)ḋiC0,i13 + εiθ̇iC0,i1×

3 ρn+1
i

]
– Therefore J (v) =

[
j

(v)
1 · · · j(v)

n

]
where j

(v)
i = (1 − εi)C0,i13 + εiC0,11×

3 ρn+1
i

• J =
[
j1 · · · jn

]
where ji =

[
j

(v)
i

j
(ω)
i

]
=



[
C0,i1×

3 ρn+1
i

C0,i13

]
revolute joint[

C0,i13

0

]
prismatic joint

Force

• Define the joint control force/torque as
⃗
ηi

i−1 = ηi
⃗
zi =

{
τi

⃗
zi revolute joint

fi
⃗
zi prismatic joint

– This force or torque is between links i − 1 and i
• We can obtain the actual control input force by taking the dot product of the joint forces with

⃗
zi, since

only 1 of 6 degrees of freedom of force is due to the input and the other are due to constraints
• How do we relate the control input force to the force delivered at the end-effector?
• Consider a free-body segment between links i and n; assume this is static (i.e. ignoring inertial forces)

– The interlink force and torque are
⃗
τ i

i−1 =
⃗
τee +

⃗
ρn+1

i ×
⃗
fee and

⃗
f i

i−1 =
⃗
fee, derived from the FBD

• The control inputs are therefore ηi =
{

τi =
⃗
zi ·

⃗
τee +

⃗
zi · ρn+1

i ×
⃗
fee revolute joint

fi =
⃗
zi ·

⃗
fee prismatic joint

– Expressed in world frame: ηi =
{

τi = (C0,i13)T τ ee
0 + (C0,i1×

3 ρn+1
i )T fee

0 revolute joint
fi = (C0,i13)T fee

0 prismatic joint

• This gives η = JT (q)f where f =
[
fee

0
τ ee

0

]
, where the Jacobian is the same as before

Acceleration

• a = v̇ =
[

v̇ee
0

ω̇ee
0

]
• So a = J(q)q̈ + J̇(q)q̇

• We can write ˙J(q)q̇ = col

 n∑
j=1

n∑
k=1

∂Jik

∂qj
q̇j q̇k
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Kinematics
• Forward kinematics is finding v given q̇ and q; this is easy if we have the Jacobian
• Inverse kinematics is the problem of finding q̇ given v (and integrating for q); in general this is much

more challenging
• If the Jacobian is square and invertible, then we can simply find q̇ = J−1(q)v
• If it is not invertible, assuming m < n (i.e. we have more joints/DoF than spacial dimensions), we can

try using the pseudoinverse
– Provided rank J = m, JJT is invertible
– Define the (Moore-Penrose) pseudoinverse J† = JT (JJT )−1, so JJ† = 1 ∈ Rm×m

• Then in general if rank J = m, q̇ = J†v + (1 − J†J)b, for any b ∈ Rn (i.e. we have an infinite number
of solutions)

– Note that (1 − J†J)b ∈ ker J
– Take b = 0 if we want to minimize the joint rates

• What about square but non-invertible J or rank J < m?
– In this case we have a singularity – we cannot solve for q̇ given an arbitrary v

• At singularities, configurations with motion in certain directions may be unattainable
– These often occur at boundaries of the workspace
– Finite end-effector rates might imply infinite joint rates
– Finite joint forces/torques might imply infinite end-effector forces and torques

Definition

A singularity occurs at q when rank J(q) < m, or equivalently det(J(q)J(q)T ) = 0, where m is the
dimension of the workspace.

Figure 1: Simple singularity example.

• Singularities for the above arm occur at θ3 = 0, π or θ3 = −2θ2
– At θ3 = −2θ2, the end-effector will be on the z axis, so any θ1 gives us the same end-effector

position; therefore we can’t solve for θ1
– At θ3 = 0, the links are in a straight line, so we can’t get any motion along that line
– At θ3 = π, the arm is folded back on itself, so again we can’t get any motion on that line

• Translation and rotation of an end-effector can be theoretically uncoupled if we have a wrist-partitioned
arm, if:

– Last 3 joints are revolute with axes passing through the common centre E
– Successive axes are not parallel
– E can be placed arbitrarily in position space

• Practically however the end-effector is always displaced from E
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Figure 2: Singularity example.

Figure 3: A wrist-partitioned arm.

4


	Lecture 18, Nov 16, 2023
	Manipulator Jacobians
	Velocity
	Force
	Acceleration

	Kinematics


