Lecture 17, Nov 14, 2023

Manipulators

- Two types of topologies: open chains, where there are no closed loops in the system, and closed chains
- We consider 2 types of joints: *revolute* (i.e. rotational) and *prismatic* (i.e. translational, extending/contracting)
 - Consider only 1 degree of freedom per joint

Figure 1: Types of manipulators.

- We are particularly interested in 3-DoF manipulators, because 3 independent degrees of freedom lets us place the end-effector anywhere in 3D translational space
 - Attaching another 3 degrees of freedom via a wrist will get us the rotations as well
- 3-DoF manipulators:
 - Cartesian: PPP (prismatic-prismatic-prismatic)
 - * e.g. a 3D printer
 - * Each degree of freedom covers a Cartesian coordinate
 - * Workspace shape is a cube
 - Revolute/anthropomorphic: RRR (revolute-revolute-revolute)
 - * e.g. ABB IRB1400
 - * The joints are referred to as body, shoulder, forearm
 - SCARA (Selective Compliant Articulated Robot for Assembly): RRP (revolute-revolute-prismatic) * e.g. Epson E2L653S
 - Spherical/polar: RRP (revolute-revolute-prismatic)
 - * e.g. the Stanford arm
 - * Unlike SCARA the second revolute joint is rotated
 - Cylindrical: RPP (revolute-prismatic-prismatic)
 - * e.g. Seiko RT3300

Manipulator Geometry

- Rotation matrices form the special orthogonal group, $SO(3) = \{ C \in \mathbb{R}^{3 \times 3} \mid C^T C = 1, \det C = 1 \}$
 - Recall that a group is a set of elements G and a binary operation xy that is closed, associative, has an identity and inverse
 - Commutative groups (aka Abelian groups) have a commutative binary operation (SO(3) is not Abelian)
 - -SO(3) is a *Lie group*, i.e. it is differentiable
- Given a point \underline{w} expressed in $\underline{\mathcal{F}}_b$ relative to O_b , we may want to express it in $\underline{\mathcal{F}}_a$ relative to O_a ; O_b has position ρ relative to O_a
 - has position $\vec{\rho}$ relative to O_a $- \vec{v} = \vec{w} + \vec{\rho} \iff \boldsymbol{v}_a = \boldsymbol{C}_{ab} \boldsymbol{w}_b + \boldsymbol{\rho}_a$
 - We can combine this as $\begin{bmatrix} \boldsymbol{v}_a \\ 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{C}_{ab} & \boldsymbol{\rho}_a \\ \boldsymbol{0}^T & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{w}_b \\ 1 \end{bmatrix} \implies \boldsymbol{u}_a = \boldsymbol{T}_{ab} \boldsymbol{u}_b$ * Note this only works for position vectors
 - T_{ab} is a 4 × 4 matrix that generalizes rotations
 - T forms the special Euclidean group $SE(3) = \left\{ T = \begin{bmatrix} C & \rho \\ 0^T & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \mid C^T C = 1, \det C = 1 \right\}$ * This is also a Lie group but not a commutative group
 - * This is also a Lie group but not a commutative group - Note $T^{-1} = \begin{bmatrix} C^T & -C^T \rho \\ 0^T & 1 \end{bmatrix}$, and the identity of SE(3) is $\mathbf{1}_{4\times 4}$
 - In SE(3), $\dot{T}_{ab} = -\Omega_a^{ab}T_{ab}$ where $\Omega_a^{ab} = \begin{bmatrix} \omega_a^{ab^{\times}} & v_a^{ab} \\ 0^T & 0 \end{bmatrix}$
 - $\ast\,$ This is a generalized form of Poisson's kinematical equation

Denavit-Hartenberg Parameters

Figure 2: Denavit-Hartenberg Parameters.

- We can describe any series link manipulator with revolute and prismatic joints using *Denavit-Hartenberg* parameters
 - The DH parameters consist of 4 parameters per joint:
 - 1. Link length (a_i)
 - * This is the length of a line segment normal to and joining $\underline{z}_i, \underline{z}_{i+1}$ (direction $\underline{x}_i = \underline{z}_i \times \underline{z}_{i+1}$)
 - This could be longer than the actual physical length of the link due to the orientation of axes
 - * The \underline{z}_i are the axes of each joint axis of rotation for revolute joints, axis of translation for prismatic joints
 - * The intersection of this line and the link axes are the reference points O_i
 - Note if \underline{z}_i and \underline{z}_{i-1} are parallel, this reference point can be anywhere

- Note O_i is not fixed with respect to link i, but link i 1 instead (for a prismatic joint, O_i can shift)
- 2. Link twist (α_i)

* This is the angle between \underline{z}_{i-1} and \underline{z}_i

- 3. Link offset (d_i)
 - * This is the distance along \underline{z}_i from O_i to the intersection of $\underline{x}_i, \underline{z}_i$
- * This is a variable if the joint is prismatic, fixed if the joint is revolute 4. Joint angle (θ_i)
 - * This is the angle between \underline{x}_i and \underline{x}_{i-1}
- * This is a variable if the joint is revolute, fixed if the joint is prismaticNote that this is referred to as the *modified* DH parameters

Figure 3: Example: SCARA manipulator DH parameters.

• The relative position of
$$O_{i+1}$$
 from O_i is $\rho_i^{i+1} = d_i \underline{z}_i + a_i \underline{x}_i$
- In \underline{F}_i we have $\underline{\rho}_i^{i+1} = \begin{bmatrix} a_i \\ 0 \\ d_i \end{bmatrix}$

• Consider an arbitrary point P with position \underline{v}_i relative to O_i ; then $\underline{v}_i = \underline{v}_{i+1} + \underline{\rho}_i^{i+1} = \underline{v}_{i+1} + d_i \underline{z}_i + a_i \underline{x}_i$ - The rotation matrix from $\underline{\mathcal{F}}_{i-1}$ to $\underline{\mathcal{F}}_i$ is $C_{i,i-1} = C_3(\theta_i)C_1(\alpha_i)$ (first rotate about \underline{x}_{i-1} , then rotate about \underline{z}_i)

$$- \text{ Therefore } \mathbf{T}_{i,i+1} = \begin{bmatrix} \mathbf{C}_{i,i+1} & d_i \mathbf{1}_3 + a_i \mathbf{1}_1 \\ \mathbf{0}^T & 1 \end{bmatrix} \\ - \text{ Expanded out: } \mathbf{T}_{i,i+1} = \begin{bmatrix} \cos(\theta_{i+1}) & -\sin(\theta_{i+1}) & 0 & a_i \\ \sin(\theta_{i+1})\cos(\alpha_{i+1}) & \cos(\theta_{i+1}\cos(\alpha_{i+1}) & -\sin(\alpha_{i+1}) & 0 \\ \sin(\theta_{i+1})\sin(\alpha_{i+1}) & \cos(\theta_{i+1})\sin(\alpha_{i+1}) & \cos(\alpha_{i+1}) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$