
Lecture 13, Oct 19, 2023
Bayesian Localization

• Bayesian localization is a localization technique based on probability
– Kalman filtering is a form of this for Gaussian distributions

• Let p(x) be the probability that the robot is at location x
– x can represent a number of things, including a point in continuum state space (e.g. pose),

discretized state space (e.g. a cell), or some descriptive location (e.g. a room in a building)
– The first two are examples of ordered sets, which Kalman filters can do; the last is an unordered

set, which we can do using a Bayesian Filter
• We will have a probability distribution described by p(x); for ordered sets we can take the mean or

media, for unordered sets we can take the mode
• Recall that for conditional probability, p(x|z) =

∑
∀y

p(x|y, z)p(y|z)

– We will be making heavy use of Bayes’ rule, p(x|y) = p(y|x)p(x)
p(y)

• For localization, we will assume the Markov property, p(xk+1|xk, xk−1, . . . , x0) = p(xk+1|xk), i.e. the
probability of being in a state depends only on the previous state (and input) and not any of the states
prior to that

• Let z0:k = z0, z1, . . . , zk be a sequence of measurements up to and including time step k; the prediction
of state xk+1 given measurements z0:k is denoted p(xk+1|z0:k); the control inputs are υk, uk

• Start by predicting the state probabilities at k + 1 given the state at time k

– p(xk+1|z0:k) =
∑

υk∈Υ
p(xk+1|υk, z0:k)p(υk|z0:k) = p(xk+1|υuk, z0:k)

– If we assume we can deliver our desired control with certainty, p(υk|z0:k) is only 1 when υk = uk

and zero elsewhere, which is why we can get rid of the sum
• p(xk+1|z0:k) = p(xk+1|uk, z0:k) =

∑
xk∈Λ

p(xk+1|xk, uk, z0:k)p(xk|z0:k)

– This considers all possible positions in the previous state, where Λ is the entire state space
– Assume p(xk+1|xk, uk, z0:k) = p(xk+1|xk, uk), that is, what the robot is doing is independent of

the measurements
– p(xk+1|xk, uk) is just our state model that describes xk+1 in terms of xk and uk

• The a priori state estimate is given by p(xk+1|z0:k) =
∑

xk∈Λ

p(xk+1|xk, uk)p(xk|z0:k)

– By Bayes’ rule, p(xk+1|z0:k+1) = p(xk+1|z0:k, zk+1) = p(zk+1|xk+1, z0:k)p(xk+1|z0:k)
p(zk+1|z0:k)

– Assume p(zk+1|xk+1, z0:k) = p(zk+1|xk+1), i.e. the measurement has no dependence on previous
measurements

* This is our measurement model expressed probabilistically
• The a posteriori estimate is then p(xk+1|z0:k+1) = p(zk+1|xk+1)p(xk+1|z0:k)

p(zk+1|z0:k)
– The denominator is a normalization factor

• Therefore:
– State prediction: p(xk+1|z0:k) =

∑
xk∈Λ

p(xk+1|xk, uk)p(xk|z0:k)

* i.e. we take the state distribution we currently have, and we use the state prediction model to
see what that distribution transforms into

– State update: p(xk+1|z0:k+1) = p(zk+1|xk+1)p(xk+1|z0:k)∑
ξk+1∈Λ p(zk+1|ξk+1)p(ξk+1|z0:k)

* i.e. we take the predicted state distribution, and use the measurement model to see how likely
each of the predicted states would yield the measurement that we got

– Unlike Kalman filtering, now we get the entire probability distribution of the state instead of just
the mean; however now we need to consider the entire possible state space

1

Figure 1: Comparison of Bayesian and Kalman filtering.

Particle Filtering
• Bayesian localization requires us to update all possible states at the same time; what if state space was

continuous, or really large?
• The summations would become integrals for continuous probability distributions, but this is hard to

compute
• Instead of treating the probabilities as continuous, we can instead use sampling

– This is referred to as particle filtering or Monte Carlo filtering
– We draw a set of discrete points Λk =

{
x

[1]
k , x

[2]
k , . . . , x

[p]
k

}
from p(xk) to represent the distribution;

each of these points is called a particle
– The basic idea is to follow each particle as if it describes the robot’s pose, and hope that all

particles converge on the robot’s true pose

– The pose at any given time can be estimated as x̂k =
p∑

i=1
w

[i]
k x

[i]
k

– Now the question is how to calculate the weights
• Particle filter procedure:

– At each time k, draw a set of p particles Λk from p(xk)
* If we know the initial location, we can sample the particles around it, otherwise can choose to

evenly distribute the particles
– For each particle calculate the prediction as p(x[i]

k+1|z0:k) = p(x[i]
k+1|x[i]

k , uk)p(x[i]
k |z0:k)

– Then update the state as p(x[i]
k+1|z0:k+1) =

p(zk+1|x[i]
k+1)p(x[i]

k+1|z0:k)∑
ξ

[j]
k+1∈Λk+1

p(zk+1|ξ[j]
k+1)p(ξ[j]

k+1|z0:k)

– Now we can estimate the state as x̂k+1 =
p∑

i=1
w

[i]
k+1x

[i]
k+1, with the weight of each particle being its

(normalized) probability

– Update the probability distribution as p(xk+1|z0:k+1) = p(x[i]
k+1|z0:k+1) ∼

p∑
i=1

w
[i]
k+1ϕ(xk+1−x

[i]
k+1)

* This is combining the distributions of the individual particles
• One advantage of the particle filter is that it works on any probability distribution of states

2

	Lecture 13, Oct 19, 2023
	Bayesian Localization
	Particle Filtering

