Lecture 13, Oct 19, 2023

Bayesian Localization

o Bayesian localization is a localization technique based on probability
— Kalman filtering is a form of this for Gaussian distributions
o Let p(x) be the probability that the robot is at location x
— x can represent a number of things, including a point in continuum state space (e.g. pose),
discretized state space (e.g. a cell), or some descriptive location (e.g. a room in a building)
— The first two are examples of ordered sets, which Kalman filters can do; the last is an unordered
set, which we can do using a Bayesian Filter
o We will have a probability distribution described by p(z); for ordered sets we can take the mean or
media, for unordered sets we can take the mode

o Recall that for conditional probability, p(z|z) = Zp(w\y, 2)p(y|z)
Yy

— We will be making heavy use of Bayes’ rule, p(z|y) = W
p\y
 For localization, we will assume the Markov property, p(zx+1|Tk, Zx—1,-..,%0) = p(Tg+1|zk), i.e. the

probability of being in a state depends only on the previous state (and input) and not any of the states
prior to that
e Let zg.x = 20,21, - -, 2% be a sequence of measurements up to and including time step k; the prediction
of state x11 given measurements zp.j; is denoted p(x+1]20:k); the control inputs are vy, uy
o Start by predicting the state probabilities at k£ + 1 given the state at time k
= P(@k41l208) = Z P(Tr+1|Vk, 20:6)P(Vk|20:6) = P(Tpt1[vUR, Z0:8)
v eY
— If we assume we can deliver our desired control with certainty, p(vk|zo.x) is only 1 when v = uy
and zero elsewhere, which is why we can get rid of the sum
o p(xrialzon) = p(@rralu, 206) = Y p(@ria|Th, uk, 20:0)P(@k] 20:8)
TR EA
— This considers all possible positions in the previous state, where A is the entire state space

— Assume p(zg41|Tr, Uk, 20:k) = P(Tk41|Tk, ug), that is, what the robot is doing is independent of
the measurements
— p(Xp41|Tk, uk) is just our state model that describes x4 in terms of xj and wy
o The a priori state estimate is given by p(2g41]20.k) = Z P(Tr1|Tr, ug)p(Tk|20:%)
T EA
P(Zhg1|Tha 1, 20:0)P(Tht 1] 20:1)
p(2k+l|ZO:k)
— Assume p(zk41|Tk+1,20:) = P(Zk+1|Trs1), ie. the measurement has no dependence on previous
measurements
* This is our measurement model expressed probabilistically
P(Zht1|Tha1)P(Trt1]20:1)
P(2k11]20:k)

— By Bayes’ rule, P(l’k+1|Zo:k+1) = p($k+1|Zo:k, Zk+1) =

o The a posteriori estimate is then p(rgi1|z0:64+1) =

— The denominator is a normalization factor
o Therefore:
— State prediction: p(xg41|20:k) = Z P(Tkr1|Tk, wi)p(TE|20:1)
T EA
i.e. we take the state distribution we currently have, and we use the state prediction model to
see what that distribution transforms into
— State update: p(xgt1|z0:641) = P(Zrt1|Tr4)P(Tri1|20:8)
2errren P2 11€k41)P(Ep1]20:0)
* i.e. we take the predicted state distribution, and use the measurement model to see how likely
each of the predicted states would yield the measurement that we got
— Unlike Kalman filtering, now we get the entire probability distribution of the state instead of just
the mean; however now we need to consider the entire possible state space

*




Bayes Kalman
P(Thg1| Tk, ur) X1 = ApXg + Bruy, + vy,

p(2k|zr) z; = DipX; + Wy,
p(Trr1]20:%) Xpp 1k
p(Tri1|z0:k41) X4 1|k+1

Figure 1: Comparison of Bayesian and Kalman filtering.

Particle Filtering

e Bayesian localization requires us to update all possible states at the same time; what if state space was
continuous, or really large?

e The summations would become integrals for continuous probability distributions, but this is hard to
compute

o Instead of treating the probabilities as continuous, we can instead use sampling

— This is referred to as particle filtering or Monte Carlo filtering

We draw a set of discrete points Ay = { acgcl] , a:f}, .. ,azgcp] } from p(xy) to represent the distribution;

each of these points is called a particle
The basic idea is to follow each particle as if it describes the robot’s pose, and hope that all
particles converge on the robot’s true pose

P
The pose at any given time can be estimated as &y = Z wl[j]xg]
i=1

Now the question is how to calculate the weights
e Particle filter procedure:
— At each time k, draw a set of p particles Ay from p(xy)
* If we know the initial location, we can sample the particles around it, otherwise can choose to
evenly distribute the particles

— For each particle calculate the prediction as p(l‘ﬂﬁzozk) = p(wELl\mE],uk)p(mg] |z0:x)

P(Zr41 |-’BE§L1)P(-"UEA |zo:k)
(7]

— Then update the state as p(wﬂ_ﬁz&kﬂ) = :
ZE%GAW plzea € )p(ERL | Z0x)

P
— Now we can estimate the state as ;41 = Zw,ﬂlmﬂl, with the weight of each particle being its
=1

(normalized) probability

P
— Update the probability distribution as p(€x+1|2z0.x+1) = p(ar:@_1 |Z0:k41) ~ Z w,[ﬂrlqﬁ(wkﬂ —a:%l_l)
i=1
* This is combining the distributions of the individual particles
e One advantage of the particle filter is that it works on any probability distribution of states



	Lecture 13, Oct 19, 2023
	Bayesian Localization
	Particle Filtering


