Lecture 13, Oct 19, 2023

Bayesian Localization

- Bayesian localization is a localization technique based on probability
 - Kalman filtering is a form of this for Gaussian distributions
- Let p(x) be the probability that the robot is at location x
 - -x can represent a number of things, including a point in continuum state space (e.g. pose), discretized state space (e.g. a cell), or some descriptive location (e.g. a room in a building)
 - The first two are examples of ordered sets, which Kalman filters can do; the last is an unordered set, which we can do using a Bayesian Filter
- We will have a probability distribution described by p(x); for ordered sets we can take the mean or media, for unordered sets we can take the mode

Recall that for conditional probability,
$$p(x|z) = \sum_{\forall y} p(x|y,z)p(y|z)$$

- We will be making heavy use of Bayes' rule, $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$

- For localization, we will assume the Markov property, $p(x_{k+1}|x_k, x_{k-1}, \ldots, x_0) = p(x_{k+1}|x_k)$, i.e. the probability of being in a state depends only on the previous state (and input) and not any of the states prior to that
- Let $z_{0:k} = z_0, z_1, \ldots, z_k$ be a sequence of measurements up to and including time step k; the prediction of state x_{k+1} given measurements $z_{0:k}$ is denoted $p(x_{k+1}|z_{0:k})$; the control inputs are v_k, u_k
- Start by predicting the state probabilities at k+1 given the state at time k

$$- p(x_{k+1}|z_{0:k}) = \sum_{v_k \in \Upsilon} p(x_{k+1}|v_k, z_{0:k}) p(v_k|z_{0:k}) = p(x_{k+1}|v_{0k}, z_{0:k})$$

- If we assume we can deliver our desired control with certainty, $p(v_k|z_{0:k})$ is only 1 when $v_k = u_k$ and zero elsewhere, which is why we can get rid of the sum

•
$$p(x_{k+1}|z_{0:k}) = p(x_{k+1}|u_k, z_{0:k}) = \sum_{x_k \in \Lambda} p(x_{k+1}|x_k, u_k, z_{0:k}) p(x_k|z_{0:k})$$

- This considers all possible positions in the previous state, where Λ is the entire state space
- Assume $p(x_{k+1}|x_k, u_k, z_{0:k}) = p(x_{k+1}|x_k, u_k)$, that is, what the robot is doing is independent of the measurements
- $-p(x_{k+1}|x_k, u_k)$ is just our state model that describes x_{k+1} in terms of x_k and u_k
- The *a priori* state estimate is given by $p(x_{k+1}|z_{0:k}) = \sum_{x_k \in \Lambda} p(x_{k+1}|x_k, u_k)p(x_k|z_{0:k})$ By Bayes' rule, $p(x_{k+1}|z_{0:k+1}) = p(x_{k+1}|z_{0:k}, z_{k+1}) = \frac{p(z_{k+1}|x_{k+1}, z_{0:k})p(x_{k+1}|z_{0:k})}{p(z_{k+1}|z_{0:k})}$
 - Assume $p(z_{k+1}|x_{k+1}, z_{0:k}) = p(z_{k+1}|x_{k+1})$, i.e. the measurement has no dependence on previous measurements
- The *a posteriori* estimate is then $p(x_{k+1}|z_{0:k+1}) = \frac{p(z_{k+1}|x_{k+1})p(x_{k+1}|z_{0:k})}{p(z_{k+1}|z_{0:k})}$
- The denominator is a normalization factor
- Therefore:
 - State prediction: $p(x_{k+1}|z_{0:k}) = \sum_{x_{k} \in A} p(x_{k+1}|x_{k}, u_{k}) p(x_{k}|z_{0:k})$

* i.e. we take the state distribution we currently have, and we use the state prediction model to see what that distribution transforms into

- State update: $p(x_{k+1}|z_{0:k+1}) = \frac{p(z_{k+1}|x_{k+1})p(x_{k+1}|z_{0:k})}{\sum_{\xi_{k+1} \in \Lambda} p(z_{k+1}|\xi_{k+1})p(\xi_{k+1}|z_{0:k})}$ * i.e. we take the predicted state distribution, and use the measurement model to see how likely
 - each of the predicted states would yield the measurement that we got
- Unlike Kalman filtering, now we get the entire probability distribution of the state instead of just the mean; however now we need to consider the entire possible state space

Bayes	Kalman
$p(x_{k+1} x_k, u_k)$	$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{v}_k$
$p(z_k x_k)$	$\mathbf{z}_k = \mathbf{D}_k \mathbf{x}_k + \mathbf{w}_k$
$p(x_{k+1} z_{0:k})$	$\hat{\mathbf{x}}_{k+1 k}$
$p(x_{k+1} z_{0:k+1})$	$\hat{\mathbf{x}}_{k+1 k+1}$

Figure 1: Comparison of Bayesian and Kalman filtering.

Particle Filtering

- Bayesian localization requires us to update all possible states at the same time; what if state space was continuous, or really large?
- The summations would become integrals for continuous probability distributions, but this is hard to compute
- Instead of treating the probabilities as continuous, we can instead use sampling
 - This is referred to as *particle filtering* or *Monte Carlo filtering*
 - We draw a set of discrete points $\Lambda_k = \left\{ \boldsymbol{x}_k^{[1]}, \boldsymbol{x}_k^{[2]}, \dots, \boldsymbol{x}_k^{[p]} \right\}$ from $p(\boldsymbol{x}_k)$ to represent the distribution; each of these points is called a *particle*
 - The basic idea is to follow each particle as if it describes the robot's pose, and hope that all particles converge on the robot's true pose
 - The pose at any given time can be estimated as $\hat{\boldsymbol{x}}_k = \sum_{i=1}^{P} w_k^{[i]} \boldsymbol{x}_k^{[i]}$
 - Now the question is how to calculate the weights
- Particle filter procedure:
 - At each time k, draw a set of p particles Λ_k from $p(\boldsymbol{x}_k)$
 - * If we know the initial location, we can sample the particles around it, otherwise can choose to evenly distribute the particles
 - For each particle calculate the prediction as $p(\boldsymbol{x}_{k+1}^{[i]}|\boldsymbol{z}_{0:k}) = p(\boldsymbol{x}_{k+1}^{[i]}|\boldsymbol{x}_{k}^{[i]}, \boldsymbol{u}_{k})p(\boldsymbol{x}_{k}^{[i]}|\boldsymbol{z}_{0:k})$
 - Then update the state as $p(\boldsymbol{x}_{k+1}^{[i]}|\boldsymbol{z}_{0:k+1}) = \frac{p(\boldsymbol{z}_{k+1}|\boldsymbol{x}_{k+1}^{[i]})p(\boldsymbol{x}_{k+1}^{[i]}|\boldsymbol{z}_{0:k})}{\sum_{\boldsymbol{\xi}_{k+1}^{[j]} \in \Lambda_{k+1}} p(\boldsymbol{z}_{k+1}|\boldsymbol{\xi}_{k+1}^{[j]})p(\boldsymbol{\xi}_{k+1}^{[j]}|\boldsymbol{z}_{0:k})}$

- Now we can estimate the state as $\hat{x}_{k+1} = \sum_{i=1}^{\nu} w_{k+1}^{[i]} x_{k+1}^{[i]}$, with the weight of each particle being its

(normalized) probability

- Update the probability distribution as $p(\boldsymbol{x}_{k+1}|\boldsymbol{z}_{0:k+1}) = p(\boldsymbol{x}_{k+1}^{[i]}|\boldsymbol{z}_{0:k+1}) \sim \sum_{i=1}^{p} w_{k+1}^{[i]} \phi(\boldsymbol{x}_{k+1} - \boldsymbol{x}_{k+1}^{[i]})$

 $\ast\,$ This is combining the distributions of the individual particles

• One advantage of the particle filter is that it works on any probability distribution of states