
Lecture 11, Oct 12, 2023
Control (Actuator) Noise

• Consider the control input having some noise, so uk = u∗
k|k + nk where uk is the actual control input

delivered, u∗
k|k is the requested control input, and nk is some zero-mean, Gaussian noise with covariance

Nk

• After linearization xk+1 = x̂k+1|k + Ak(xk − x̂k|k) + Bk(uk − u∗
k|k) + vk

• In this case our a priori covariance estimate is AkPk|kAT
k + BkNkBT

k + Qk

• The rest stays unchanged

Kalman Filtering Example – Observability, Controllability, Detectability and
Stabilizability

Figure 1: Example scenario.

• Consider a differentially steered robot: xk+1 = f(xk, uk) = Akxk +
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• The robot measures the angle and perpendicular distance to a wall; the wall is specified in the map as
an angle β and distance ρ

• The measurement model is: zk =
[
αk

rk

]
=

[
β − θk

ρ − xk cos β − yk sin β

]
+ wk = h(xk) + wk

– Linearize: Dk+1 = ∂h

∂xT
k+1

=
[

0 0 −1
− cos β − sin β 0

]
• Note that for Kalman filters to work, the system has to be observable, that is, using sufficient measure-

ments of z, we can reconstruct x

– A system ẋ = Ax + Bu, z = Dx is observable if the observability matrix O =


D

DA
...

DAn−1

 has

rank n
• The dual of observability is controllability, the ability to achieve any system state by using a sequence

of control inputs u
– The controllability matrix is C =

[
B AB A2B · · · AnB

]
, which needs to be rank n for

the system to be controllable
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• Our system is not observable, since A is the identity and D has rank 2
– This corresponds to the fact that we don’t get enough information by just looking at the wall; we

could be anywhere along the wall and still get the same measurement
– In this case, the output of the filter is not guaranteed to be correct (but we have no way of telling

this)
• Detectability is a weaker form of observability which requires an L to exist such that A + LD is stable

– This means that the unobservable states are stable according to their own dynamics
• Stabilizability is the dual of detectability, which requires K to exist such that A + BK is stable

– This means that the uncontrollable states are stable according to their own dynamics
• If a system is not observable, but it is still detectable and stabilizable, then the Kalman filter will still

converge
• Note that stability in a discrete system requires that all |λ| < 1 (since we have xn = Anx0), whereas in

a continuous system we require the eigenvalues to have negative real parts
– This is known as Schur stability

Mapping
• Before, we assumed that we had the location of landmarks; how do we get those landmark locations in

the first place?
– To build a map, we need to localize; to localize, we need a map, leading to a chicken-and-egg

problem
– For now, we will assume we have perfect localization, and see how we can build a map of landmarks

• Suppose we have m landmarks each with coordinate ξ(i); we want to estimate ξ =

 ξ(1)

...
ξ(m)


• We can try to use Kalman filtering!
• Since landmarks don’t move, ξk+1 = ξk =⇒ A = 1, B = 0, and there is no noise
• Measurements are modelled by ζk = η(xk, ξk) + ϖk

– Example: if we treat landmarks as points (ξ(i), η(i)) and we measure their bearing ρ and distance
ϕ, then:

* ρ
(i)
k =

√
(ξ(i)

k − xk)2 + (η(i)
k − yk)2

* ϕ
(i)
k = tan−1 η

(i)
k − yk

ξ
(i)
k − xk

− θk

– This can then be linearized to obtain D
(i)
k+1

• Apply EKF:
– State estimation:

1. ξ̂k+1|k = ξ̂k|k

2. ζk+1|k = η(xk, ξ̂k+1|k)
3. νk+1 = ζk+1 − ζ̂k+1|k

4. ζ̂k+1|k+1 = ζ̂k+1|k + Wk+1νk+1
– Covariance estimation:

1. Pk+1|k = Pk|k
2. Sk+1 = Dk+1Pk+1|kDT

k+1 + Rk+1
3. Wk+1 = Pk+1|kDT

k+1S−1
k+1

4. Pk+1|k+1 = Pk+1|k − Wk+1Sk+1W T
k+1

• However, unlike state, with landmarks we may wish to add new ones during the course of estimation
– Suppose we want to add new variables to ξ, P ; we do this at the a priori stage

– The new landmark state is ξnew
k|k =

[
ξk|k

ξ
(m+1)
k|k

]
– To kick start the state: ξ

(m+1)
k|k = γ(m+1)(xk, ζ

(m+1)
k ), where γ is the inverse of η, so we initialize
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the new state by inverting the new measurement

– For P , we have P new
k|k =

[
Pk|k 0

0 P
(m+1)
k|k

]
– Kick start with P

(m+1)
k|k = G

(m+1)
k Σ(m+1)

ζ G
(m+1)
k

T
+ R

(m+1)
k where G(m+1) = ∂γ(m+1)

∂ζ(m+1)T
and

R = cov(ϖ, ϖ)

Simultaneous Localization and Mapping (SLAM)
• If we need to localize and map at the same time, we need to estimate the robot pose and landmark

position simultaneously
• Our overall state just becomes the combination of the robot state x and map ξ

•
[
xk+1
ξk+1

]
=

[
Ak 0
0 1

] [
xk

ξk

]
+

Bk

0
uk

 +
[
vk

0

]
•

[
zk

ζk

]
=

[
h(xk, ξk)
η(xk, ξk)

]
+

[
wk

ϖk

]
• Many SLAM approaches are available, but this is the essence of SLAM
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