

Tutorial 1, Sep 13, 2023

Transfer Functions

- Recall that the impedance for capacitors and inductors are dependent on frequency
 - Resistor: R
 - Capacitor: $\frac{1}{j\omega C} = \frac{1}{sC}$ where $s = j\omega$ and ω is the frequency
 - With increasing frequency, the impedance decreases
 - Inductor: $j\omega L = sL$
 - With increasing frequency, the impedance increases

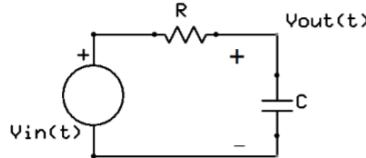


Figure 1: Example problem 1.

- Example problem 1: given the circuit above, what is $v_{out}(t)$ if $v_{in}(t) = u(t)$ (unit step)?
 - To do this we Laplace transform the input and use the transfer function
 - The impedance of the resistor is $Z_1 = R$ and the capacitor is $Z_2 = \frac{1}{sC}$; the two impedances form a voltage divider

$$v_{out} = \frac{Z_2}{Z_1 + Z_2} v_{in} = \frac{1}{sC(R + \frac{1}{sC})} v_{in} = \frac{1}{sRC + 1} v_{in} \implies \frac{v_{out}}{v_{in}} = \frac{1}{sRC + 1} = H(s)$$
 - The frequency domain signal is $\mathcal{L}\{u(t)\} = \frac{1}{s}$ so $Y(s) = \frac{1}{s} H(s) = \frac{1}{s(sRC + 1)} = \frac{1}{s} \cdot \frac{\frac{1}{RC}}{s + \frac{1}{RC}}$
 - We can already see based on the poles that this would be a decaying exponential plus an offset
 - Partial fraction expansion: $\frac{A}{s} + \frac{B}{s + \frac{1}{RC}} = \frac{1}{s} \cdot \frac{\frac{1}{RC}}{s + \frac{1}{RC}} \implies \left(s + \frac{1}{RC}\right) A + sB = \frac{1}{RC}$
 - Evaluate at $s = 0 \implies A = 1$
 - Evaluate at $s = -\frac{1}{RC} \implies B = -1$
 - $Y(s) = \frac{1}{s} - \frac{1}{s + \frac{1}{RC}}$
 - Apply the inverse transform: $\mathcal{L}^{-1}\{Y(s)\} = y(t) = u(t) - u(t)e^{-\frac{t}{RC}}$

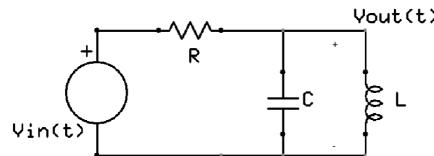


Figure 2: Example problem 2.

- Example problem 2: find the transfer function for the above circuit
 - Nodal analysis at v_{out} : $\frac{v_{out} - v_{in}}{R} + sCv_{out} + \frac{v_{out}}{sL} = 0 \implies \frac{v_{out}}{v_{in}} = \frac{s}{s^2RC + s + \frac{R}{L}}$

Op-Amp Basics

- In practice, the op-amp requires both a positive and negative power input; however for ideal op-amps that we will analyze, they are not limited by power

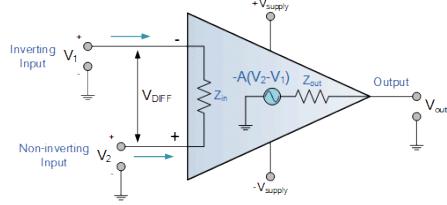


Figure 3: Diagram of an op-amp.

- It has two inputs, the noninverting input V_i^+ and inverting input V_i^- ; the currents i^+, i^- going into the two inputs are both zero for an ideal op-amp
- The op-amp amplifies the voltage difference between the two inputs by the *gain* A : $V_o = A(V_i^+ - V_i^-)$
 - For an ideal op-amp, the gain A is effectively infinite, so op-amps are almost never used as-is; instead feedback loops are used
 - The output V_o would not be affected by any impedance (it maintains its voltage regardless of load)
 - In a real op-amp there is also an output impedance, but we will assume it is zero
- Typically, the inverting input is connected through a series of impedances to the output; this results in the voltage difference between the inputs being driven to zero
 - An input signal would be connected through an impedance into the inverting input, while the noninverting input is grounded or connected to a DC voltage; this configuration is called an *inverting amplifier*
 - When the noninverting input is grounded, the inverting input is forced to ground; we refer to it as a *virtual ground*

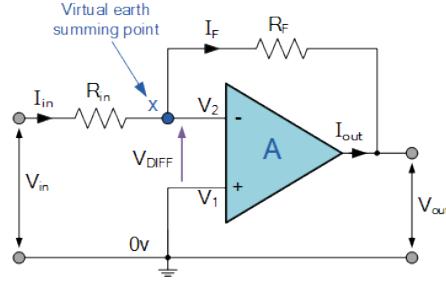


Figure 4: Inverting amplifier circuit.

- What is the transfer function of the amplifier circuit?
 - Notice that $i_{in} = i_F$ since there is no current going into the amplifier
 - $\frac{V_2 - v_{in}}{R_{in}} + \frac{V_2 - v_{out}}{R_F} = 0 \implies \frac{v_{in}}{R_{in}} - \frac{v_{out}}{R_F} = 0 \implies \frac{v_{out}}{v_{in}} = -\frac{R_F}{R_{in}}$
 - This circuit is called an inverting amplifier because of the negative sign; the input signal is amplified and inverted
 - Note that the value of v_{out} stays the same regardless of any load driven by it; if we have a two-stage amplifier, we can find the transfer functions for both stages separately and then multiply them together, since the second stage would not affect the output of the first stage