
Lecture 9, Oct 6, 2023
From Bode Plot to Transfer Function

• We can reverse a Bode plot back into a transfer function by examining the magnitude plot:
– Start by looking at the graph and finding all the inflection points – these are the pole and zero

corner frequencies
– Reverse the change in slope to find the multiplicities of the poles/zeroes
– Check for poles and zeros at the origin
– Pick any point on the graph, and use this to solve for the pure gain on the transfer function
– Note if we started with an exact bode plot, we have to first estimate the asymptote plot (however

this is relatively rare since reversing a bode plot is often used as a design tool)
• However, if we only look at the magnitude graph, we do not get a unique solution – there are multiple

transfer functions that will give you the same magnitude plot, but not the same phase plot
– Most of the time we don’t care about the phase change when working with filter design
– This could matter a lot in e.g. control systems
– It also limits us to systems with magnitude rates of change being multiples of 20dB per decade;

transfer functions with complex components can be problematic

Figure 1: Phase plot for the example problem.

• Example reverse the Bode phase plot above:
– We see inflection points at 50, 50k, and 1M, which are the corner frequencies
– At 1M, the slope changes from +20dB per decade to 0, so a pole with multiplicity 1 became active
– At 50k, the slope changes from −20dB per decade to +20dB per decade, so a zero with multiplicity

2 became active
– At 50, the slope changes from 0 to −20dB per decade, so a pole with multiplicity 1 became active
– We started with a flat slope, so there is no pole or zero at the origin

– Therefore the transfer function has form |K|(s + 50000)2

(s + 50)(s + 1000000)
– At ω = 1 the magnitude plot has value 34dB = 50.119; in our transfer function we have

|K|(50000)2
(

1
50

) (
1

1000000

)
= 50K

* Note we could choose this because the first corner frequency is more than a decade greater

– Therefore |K| is about 1, so H(s) = (s + 50000)2

(s + 50)(s + 1000000)
* Note that we could’ve set K = ±1 and we would get the same magnitude; this would be

reflected in the phase plot
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Figure 2: The inverting amplifier as a building block.

From Transfer Function to Circuit
• Due to our simplifications, the simplest way for us to do this is to use a bunch of op-amp building

blocks
– Note this is an easy way, but not an optimal way

• Each inverting amplifier can (usually) give us up to one pole and one zero
• To get the desired Z1, Z2 to make the poles, we can choose a resistor and either an inductor or a

capacitor
– In practice capacitors are preferred because they are much cheaper and available in a wider range

of values
– However capacitors have a shorter lifespan (tens of thousands of hours vs. decades for inductors)
– Capacitors are better at the lower frequencies while inductors are better at higher frequencies
– In addition, we can also do resistors and capacitors/inductors in series or parallel, giving us a total

of 4 choices per impedance
* This means 16 possible combinations! Some of these can implement more advanced functions

such as double poles/zeros
– Example combination:

* Both resistor and capacitor in series: Z1 = R1 + 1
sC1

, Z2 = R2 + 1
sC2

, then the transfer

function has a pure gain of K = −R2

R1
, a pole at 1

R1C1
, and a zero at 1

R2C2
* Both resistor and inductor in series: Z1 = R1 + sL1, Z2 = R2 + sL2, then the transfer function

has a pure gain of K = −L2

L1
, a pole at R1

L1
and a zero at R2

L2
• In the real world, we need to choose realistic component values:

– Resistors from 100Ω to 4.7MΩ
* Too low and we’ll get opamp loading effects
* Too high and there will be current going into the opamp

– Capacitors from 10pF to 1µF
* Too low and it will be too hard to make and too sensitive (capacitance exists between rows on

a breadboard!)
* Too high and we’ll have to use electrolytic capacitors, which are polarized, and less accurate

– Inductors from 1µH to 500mH
* Too low and the inductance will be comparable to PCB traces, so the circuit will be extremely

sensitive
* Too high and the inductor will be too hard to make and too big

• Systematic procedure to find a circuit:
1. Group poles and zeros into pairs; each pair uses an inverting amplifier block
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– Try to keep the corner frequencies of the poles and zero close
– When poles and zeros are very different, the gain will be extreme and reduces flexibility
– For any remaining lone poles and zeros, add another amplifier block

2. Divide any pure gain among the blocks; add additional pure gain blocks as needed
– We can estimate the amount of gain that a stage provides by dividing the zero by the pole, so

we can get an estimate of how much gain is left
– Remember that real opamps have gain limits

3. Select realistic component values
– Start with capacitors and inductors first because they have a much smaller range of values

• Example: H(s) = (s + 50000)2

(s + 50)(s + 1000000)
– We have to match one 50k zero with the 50 pole and the other 50k zero with the 1M pole
– The first stage has a gain of approximately 1000, the second has a gain of 1/100, which leaves us

with a gain of 10
* When the leftover gain is one or two magnitudes, we are usually able to divide it among all

the stages without having to add an additional amplifier
* Note in practice we need to keep track of the magnitude of our signal in-between stages; if the

signal becomes too small, it can get lost among the noise; if it’s too big, it can get clipped
• We might want to shuffle around the stages; e.g. if we have 2 stages with really big gain

and 2 stages with really small gain, we should alternate the big and small gains so the
signal does not get lost or clipped

– If we have more freedom in grouping poles and zeros, we can try to group them differently in order
to reduce the leftover gain

– Lower frequency poles and zeroes are more easily realized with capacitors; higher frequency poles
and zeros are more easily realized with inductors (this is a direct result of the range of component
values we can use)

– In the real world we might want to calculate the equivalent impedance of each stage of the circuit
to prevent loading effects

– For now we will try using only resistors and capacitors, by RC series
– H1(s) = K1

(s + 50000)
(s + 50) , H2(s) = K2

(s + 50000)
(s + 1000000) so K1K2 = 1 which is our constraint

* We can try to get K1, K2 as close to 1 as possible for both stages
– For circuit 1: we can try to select C1, C2 first

* We want ωc = 50rad/s which has value P = 1
R1C1

* We can try a capacitor value that’s in the middle of the range, e.g. 0.5µF, giving R1 = 43kΩ
– For circuit 2: let’s pick R2 = R1

* We get a capacitor value around 23pF, which works but is quite small

Important

Lower frequency poles and zeroes are more easily realized with capacitors; higher frequency poles and
zeros are more easily realized with inductors. This is a direct result of the range of component values
we can use. Inductors begin to struggle below 100.
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