Lecture 7, Sep 29, 2023

Sketching Bode Plots

- Many common software tools exist to create Bode plots, but we are interested in sketching them by hand since this allows us to go from desired behaviour back to circuit
- Note that the behaviour that we discussed previously is for a single pole; if there are multiple poles/zeroes, their effects add together

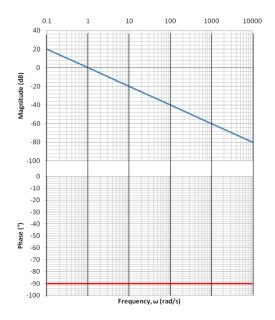


Figure 1: Bode plot for a pole at zero frequency.

- Since the horizontal axis is logarithmic, the zero frequency would be infinitely to the left
 - If our pole is at $\omega_c = 0$, the cutoff frequency would be off the plot, so we only see a diagonal line of -20dB per decade
 - The same goes for the phase plot; we almost always have a -90° shift since the diagonal section is mostly off the plot
 - For such a pole we have exactly 0dB at $\omega=1$ so we can draw a line through this point with the slope
- Zeros are effectively the opposite of poles
 - For a zero at origin, we now have a constant slope of +20dB per decade for the magnitude plot and a +90° phase shift always
 - Compared to a pole, the effect of a zero is effectively the same as a pole but reflected across the $0dB/0^{\circ}$ lines
- Note that for a phase shift the vertical axis wraps around (360° = 0°); by convention we try to keep it near zero
- In the case of constant gain $\pm K$, on the magnitude plot we have a constant value of $20 \log_1 0(|K|)$, but the phase plot is either a constant 0° if K > 0 or $\pm 180^\circ$ if K < 0, since an inversion is equivalent to a 180° phase shift
- In the case of underdamped poles and zeroes, we have a quadratic factor in the transfer function so the Bode plot is much more complicated
 - We will not deal with this much in this course, but be aware that our linear approximations will no longer work
 - These poles mostly have no change at lower frequencies and gives -40dB per decade at higher frequencies (which corresponds to the fact that they factor into two poles)

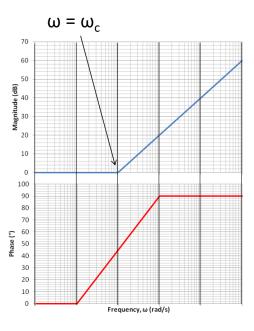


Figure 2: Bode plot for a zero.

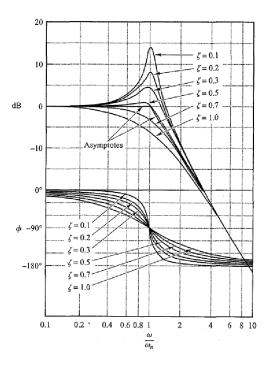


Figure 3: Bode plot for underdamped poles.

- For the phase plot the total phase shift is -180° at higher frequencies (since each pole contributes -90°); however the slope and shape of the phase plot changes significantly depending on the value of ζ
- However at frequencies near ω_n (the natural frequency) we hat a peak, which increases as ζ (the _ damping factor) decreases; this corresponds to a resonance
- For the magnitude plot we will have to split it into 3 or 4 segments to accommodate the peak
- Our linear approximation will not exactly match the real plot; we can attempt to correct for this error
 - For the magnitude plot, we can apply a correction of $\pm 3 dB$ per pole at $\omega \approx \omega_c$ and $\pm 1 dB$ at $\omega \approx 2^{\pm 1} \omega_c$
 - * We can also use a correction graph but this is often not needed

- For the phase plot, near $\omega = \pm 2^{\pm 1} \omega_c$, $|\phi| = 26.6^\circ$ or 63.4° ; at $\omega \approx 10^{\pm} 1\omega_c$, $|\phi| = 5.7^\circ$ or 84.3°

- To graph a Bode magnitude plot by hand:
 - 1. Factor the transfer function into distinct poles and zeroes
 - If we can't do this then the system is probably not LTI, or if there are complex poles, it will be very difficult for us to do
 - 2. Determine the starting point of the graph: we want the graph to start at around a factor of 10 smaller than the smallest (nonzero) pole/zero
 - This allows us to avoid most of the error at the start of the graph; since the entire graph is going to be relative to this point, if we have errors at the start the entire graph will be shifted
 - Now we need to determine the start gain in decibels
 - If poles and zeros are at at least 10rad/s and we are starting at 1rad/s, we can simplify this

 - to $K_{start} = |K|z_1z_2\cdots \frac{1}{p_1}\frac{1}{p_2}\cdots$, i.e. the product of all the poles and zeros * This works because at 1rad/s, poles and zeroes at a frequency of zero contribute nothing to the magnitude
 - * We need other poles and zeros to be much bigger than 1 so our approximation works
 - Otherwise, we must sub in $s = i\omega$ manually for the starting ω and work out the initial magnitude by brute force calculations
 - Remember to convert K_{start} back to decibels!
 - 3. Begin drawing at K_{start} (in decibels)
 - If we've picked our starting frequency properly, then we should be in the flat region of all nonzero poles and zeros
 - If there are no zero poles and zeros we start directly at this frequency, otherwise we account for them
 - 4. Draw a straight line to the next corner frequency using the current slope
 - 5. Update the rate of change based on which poles and zeros are active, and then repeat until we finish all segments
 - For each zero that's active, add +20dB per decade; for each pole add -20dB per decade
- The phase plot can be graphed in a similar way:
 - 1. Factor the transfer function into distinct poles and zeroes
 - 2. Determine the starting point of the graph
 - 3. Group and sort all corner frequencies
 - Instead of the ω_c themselves, take $0.1\omega_c$ and $10\omega_c$ which corresponds to the start and end points of the influence of each pole and zero
 - 4. Begin drawing at the starting point
 - Note each pole or zero at the origin will introduce a constant $\mp 90^{\circ}$ shift
 - 5. Draw the line segments and update the rate of change
 - Each pole or zero introduces a $\pm 45^{\circ}$ per decade on the rate of change and contributes $\pm 90^{\circ}$ in total
 - To check, count the number of poles and zeros and make sure that the endpoint is exactly $90^{\circ}z - 90^{\circ}p$ from the starting point, where z is the number of zeros and p is the number of poles

• Example: Graph the Bode plot for the transfer function: $H(s) = \frac{s^2 + 10010s + 100000}{s^2 + 1000s}$

- First we graph the magnitude plot:
 - 1. Factor the transfer function: $H(s) = 1 \frac{(s+10)(s+10000)}{s(s+1000)}$
 - * We have 2 real poles (with one at the origin), 2 real zeros, and a positive pure gain
 - * Since there is an equal number of poles and zeroes their effect cancels in the long term
 - 2. Find the initial magnitude: $K_{start} = (1) \left(\frac{1}{1}\right) \left(\frac{1}{1000}\right) (10)(10000) = 100 \implies K_{start_{dB}} =$
 - $40\mathrm{dB}$ and the starting point, which we choose to be 1rad/s which is a decade below the smallest pole/zero
 - * Since the gain is positive we don't need to start with a -180° phase
 - * The starting slope is not flat but -20dB per decade since we have a pole at the origin
 - * Since we start at $\omega = 1$ the pole at origin does not affect the starting magnitude
 - * We can also use the shortcut to compute K_{start} which would not have been possible if we started at some other frequency
 - 3. Group the poles and zeros:
 - * $\omega = 0$; pole at origin; -20dB per decade
 - * $\omega = 10$; zero; flat slope after this
 - * $\omega = 1000$; pole; -20dB per decade after this
 - * $\omega = 10000$; zero; flat slope after this
 - 4. Draw all segments of the plot
- See figures below for the completed plot; notice that it is fairly similar to the exact plot, except at the corner frequencies
- Now for the phase plot:
 - 1. Factor the transfer function in the same way
 - 2. Find the starting phase shift and starting frequency
 - * A positive starting gain would normally correspond to a 0° starting shift, but we have a pole at the origin, so we start at -90°
 - * For this plot we shouldn't start at 1rad/s anymore, because the zero at $\omega_c = 10$ generates two inflection points at 1 and 100rad/s
 - 3. Organize the poles and zeros and their effects:
 - * $\omega = 0$; pole at origin
 - * $\omega = 1$; start zero at $\omega = 10$
 - * $\omega = 100$; end zero at $\omega = 10$ and start pole at $\omega = 1000$
 - * $\omega = 1000$; start zero at $\omega = 10000$
 - * $\omega = 10000$; end pole at $\omega = 1000$
 - * $\omega = 100000$; end zero at $\omega = 10000$

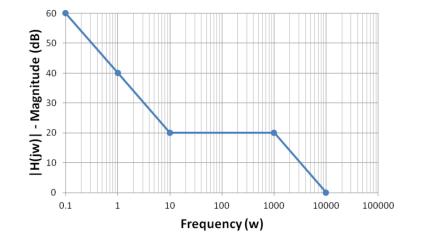


Figure 4: Magnitude plot for the example transfer function.

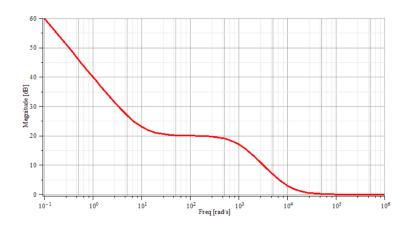


Figure 5: Exact magnitude plot created in Maple.

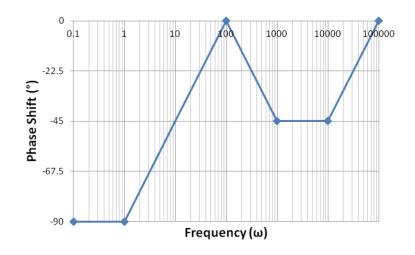


Figure 6: Phase plot for the example transfer function.

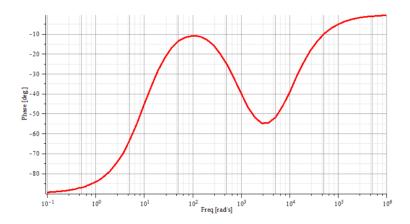


Figure 7: Exact phase plot created in Maple.