## Lecture 6, Sep 27, 2023

## **Bode Plots**

- Motivation: we need a good tool to predict what a circuit will do to a wide range of signal frequencies
  Example: H(s) = 1/(Ts+1) with y(t) = A sin(ωt)
- - We will always get a sine wave of the same frequency
  - However the phase and the amplitude of the output will be different
  - In general, all LTI systems have this property
- A Bode plot shows, for different frequencies in logarithmic scale, how a system changes the phase and amplitude of an input sinusoid
  - The information from both parts of the Bode plot are equivalent to all the information from the transfer function/pole-zero plot

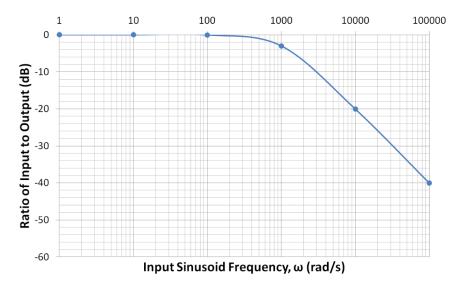



Figure 1: Magnitude Bode plot for the example transfer function.

• For the magnitude plot, a Bode plot shows the ratio of output amplitude over input amplitude in For the magnetate  $_{\rm F}$  decibels – dB =  $20 \log_{10} \frac{A_{out}}{A_{in}}$ 

- At -3dB, we consider the output amplitude to have started deviating considerably
- A typical Bode plot for a single pole looks similar to the example figure, with a horizontal segment where frequency has little effect, and a diagonal segment where increasing frequency significantly affects the output
  - \* The inflection point is the location of the pole; this is known as the *cutoff frequency* or *corner* frequency
  - \* After the pole location, each decade of increase in frequency leads to about -20dB of amplitude difference
- For the phase plot, the phase shift angle in degrees is shown
  - The phase plot can be approximated by 3 segments, with 2 horizontal ones and a diagonal one
  - In the diagonal segment, the phase decreases by  $-45^{\circ}$  per decade
  - The pole location is at the center of the diagonal segment of the phase plot; it has a phase shift of \_  $-45^{\circ}$
- A complete Bode plot requires both a magnitude and a phase plot

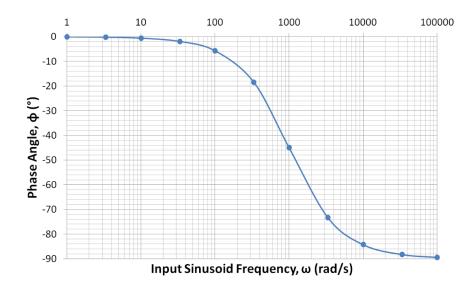



Figure 2: Phase Bode plot for the example transfer function.