Lecture 20, Nov 24, 2023

Example: Common Source Amplifier

Figure 1: Example: Common source amplifier.

Figure 2: Transformed circuit of the example.

- Example: find the open circuit voltage gain, input resistance, and output resistance of the amplifier above
 - First transform the circuit:
 - * Replace coupling capacitors C_{C1}, C_{C2} and bypass capacitor C_S with short circuits
 - * Everything in the first circle is the driving input source; this is what gives us the time-varying signal, which gets driven through some finite output impedance
 - This is not a part of our amplifier, so quantities here should not appear in our solution
 - We define v_{in} at the node right after this, between R_{sig} and C_{C1}
 - * The circle at the top right is the load, so like the input source, we also don't consider it as a part of our amplifier

- * Short circuit the voltage source at V_{DD} and replace the current source with an open circuit • Notice that if we didn't have the bypass capacitor, the circuit would not work, because
 - after removing the current source the source would be floating
- * Replace the MOSFET with the default model
- We will start by calculating the open-circuit voltage gain; for this we assume no loading effects whatsoever
 - * Later on we will account for loading effects externally, so for now we won't consider it
 - * Start by writing a node equation at v_{out} (the drain): $\frac{v_{out}}{R_D} + \frac{v_{out}}{r_0} + g_m v_{gs} = 0$
 - Note since we're calculating open loop gain, there's no current flowing in or out of the output

*
$$v_{gs} = v_g - v_s = v_{in} - 0 = v_{in}$$
 so we have $\frac{v_{out}}{R_D} + \frac{v_{out}}{r_0} + g_m v_{in} = 0$ which we can now use to

- solve for $A_{v_0} = \frac{v_{out}}{v_{in}}$ * This works out to $A_{v_0} = -g_m(r_0 \parallel R_D)$ or $-g_m R_D$ if ignoring channel length modulation * Note that since g_m and R_D are always positive, this is an inverting amplifier
- Generally, common source amplifiers have high open-loop gain (more amplification) and high input resistance (loads input less), but generally high output resistance (susceptible to output loading)
 - * These are often used near the input the large gain bumps the signal up from the noise floor and the high input resistance is good
- Now find the input resistance $R_{in} = \frac{v_{in}}{i_{in}}$ * For this circuit, it is trivial: $R_{in} = R_G$ since no current goes through the gate
 - * We can simply take a large R_G to increase the input resistance
 - R_G is part of the DC bias point but not any of the other variables, so we can more or less take it to be anything we want

- The output resistance is
$$R_{out} = \frac{v_{out}}{i_{out}}$$

- * Note we need to assume some value for v_{in} to do this calculation
- * We assume $v_{in} = 0$ to avoid double counting gain effects (i.e. we assume overall input voltage is constant)
- * If $v_{in} = 0, v_{gs} = 0$ so we get no current through the current source
- * Therefore the equivalent resistance is $r_0 \parallel R_D$ or R_D without CLM
- Notice that we need a high R_D to get high open loop gain, but this raises the output resistance

Amplifier Equivalent Models

Figure 3: Equivalent model for the amplifier we solved above.

- The amplifier circuit we solved for above could be replaced by the equivalent model above, where the amplifier is in the middle; using this we can completely abstract away the amplifier
- The amplifier is replaced by R_{in} to ground, the voltage source $A_{v_0}v_{in}$ and output resistance R_{out}
 - Notice that R_{in} forms a voltage divider with R_{sig} and R_{out} with R_L
 - Both loading effects will reduce A_{v_0} ; we only get this total gain with a zero R_{sig} and infinite R_L

• Otherwise the actual gain is
$$A_{v_{\text{total}}} = \left(\frac{R_{in}}{R_{in} + R_{sig}}\right) A_{v_0} \left(\frac{R_L}{R_L + R_{out}}\right)$$

Example Amplifiers

Figure 4: Example: Common gate amplifier.

Figure 5: Transformed circuit.

- Example: Find the same 3 quantities in the circuit above, ignoring channel length modulation – First transform the circuit
 - * R_L is part of the load and R_i is part of the source, so both can be removed * Replace C_1, C_2, C_3 with short circuits, V^+ and V^- to ground * Replace the MOSFET with the default model

 - Note that after shorting the capacitors, $v_g = 0$ so we can effectively ignore R_1, R_2
 - For A_{v_0} we can write a node equation at v_{out} : $\frac{v_{out}}{R_D} + g_m v_{gs} = 0$

Figure 6: Transformed circuit using the T-model.

- * $v_{gs} = v_g v_s = 0 v_{in}$ * Therefore $\frac{v_{out}}{R_D} - g_m v_{in} = 0$ * $A = c_s R_s$
- * $A_{v_0} = g_m R_D$
- Notice that the open-loop gain is positive, so this is a non-inverting amplifier
- Furthermore we can tweak g_m and R_D to potentially get a large open-loop gain
- R_{in} and R_{out} are more complicated to solve due to the current source; we can redraw the circuit with the T-model to simplify things
- With the T-model, we can easily tell that $R_{in} = R_S \parallel \frac{1}{gm}$
- For R_{out} , with a $v_{in} = 0$ we have no current through the current source, so $R_{out} = R_D$
- Example: similar to the common source amplifier we solved before, but using a current mirror and no bypass capacitor
 - Note that this is not a proper amplifier, since we do not have a bypass capacitor
 - Normally this would not be solvable if we replaced the current mirror with a current source, but real world CLM effects provide a path for current
 - Use the same procedure to transform this circuit:
 - * Replace V_{DD}, V_{SS} with shorts to ground
 - * Remove input source and load
 - Notice that v_{gs_1} is a function of v_{in} , but v_{gs_2} and v_{gs_3} are not
 - * The sources of both of these MOSFETs are grounded, and there is no path from v_{in} to their gates
 - * In this scenario, we can assume $v_{gs_2} = v_{gs_3} = 0$ to simplify the circuit
 - Now we can eliminate the current source from the second MOSFET, leaving us with only r_{0_2} , a large resistance to ground
 - This is equivalent to having a source resistor on the original MOSFET circuit
 - * Source resistors usually act like localized negative feedback they reduce gain but improve some other parameters, such as lowering output resistance
 - * However, unlike a normal source resistor, the CLM resistor is both hard to control and way too big
 - Write node equations:
 - * At v_{s_1} or v_{D_2} : $\frac{v_{s_1}}{r_{0_2}} + \frac{v_{s_1} v_{out}}{r_{0_1}} g_{m_1}v_{gs_1} = 0$

Figure 7: Second example circuit.

Figure 8: Transformed second example circuit.

_

- Note $v_{gs_1} = v_{in} v_{s_1}$ * At v_{out} : $\frac{v_{out}}{r_{0_1}} + \frac{v_{out} v_{s_1}}{r_{0_1}} + g_{m_1}v_{gs_1} = 0$ * Add the equations: $\frac{v_{s_1}}{r_{0_2}} + \frac{v_{out}}{r_{0_1}} = 0 \implies v_{s_1} = -\frac{r_{0_2}}{R_D}v_{out}$ * Substitute into one of the equations, and $A_{v_0} = \frac{v_{out}}{v_{in}} = -\frac{g_{m_1}r_{0_1}R_D}{g_{m_1}r_{0_1}r_{0_2} + r_{0_1} + r_{0_2} + R_D}$
- Sine the CLM resistances are high, this is approximately $\frac{R_D}{r_{0_2}}$
 - * As expected, the negative feedback reduces the gain, approximately by dividing by the resistance value
 - * However since r_{0_2} is much bigger than R_D , we will have a gain much less than 1, so this is not practical
 - * This is why source resistors are typically in the ohms or hundreds of ohms range
 - Input resistance is simply R_G , which has not changed
- Recall that when calculating output resistance only, we assume an input voltage of zero to avoid _ double-counting gain effects
 - * Assuming $v_{in} = 0$ gives us $v_{gs_1} = -v_{s_1}$, which is not necessarily zero
 - * We can brute force this by using a test output current
 - * However in this case we have a *cascode connection*, we can replace the entire thing with a single resistor to ground R_A
 - * $R_A = (1 + g_{m_1} r_{0_1}) r_{0_2} + r_{0_1} \approx g_{m_1} r_{0_1} r_{0_2}$
 - * Therefore the output resistance is simply $R_A \parallel R_D$, but since R_D is much smaller than R_A , the output resistance is still about R_D

Figure 9: Cascode connection.