Lecture 18, Nov 17, 2023

Biasing MOSFET Amplifiers

- To design an amplifier, we have to go through 2 stages:
 - First we set up the circuit to operate at a specific DC configuration
 - * This determines the *biasing* of the amplifier
 - * This gives us some parameters that determine the amplifier operation input/output resistance, voltage gain, and indirectly, the voltage limits
 - We will then use capacitors to inject an AC signal and extract the resulting signal
- Note capital letters are generally pure DC, while lowercase letters are AC
- For a single MOSFET there are generally 3 possible amplifier configurations: common source, common drain, and common gate
 - The "common" terminal is the terminal that is not coupled to an input/output
- There are several ways to do biasing:
 - Fixed V_{GS} biasing: fixing V_{GS} , where source and gate are connected to some constant voltage
 - * This is the simplest, but least useful because it is very sensitive to V_{GS} and has a small operating range
 - * The circuit might have a lot of gain, but it will be very sensitive to tolerances
 - * We are essentially overconstraining the problem
 - Fixed V_G biasing: fixing V_G and adding a source resistor
 - * An increase in current leads to an increased voltage drop across the resistor, which raises V_S
 - * With a fixed V_G , this decreases V_{GS} and decreases the current this is negative feedback
 - * This gives us a much wider range of operation V_{IN} can be a much larger range and still have good gain
 - * Introducing the source resistor reduces the output range, which can be fixed using a capacitor, either replacing or in parallel with the source resistor (*bypass capacitor*)
 - Feedback biasing: connect the drain and gate together, with a gate resistor between them
 - * Since no current flows into the gate at DC, the resistor has no impact on the gate resistance, so we just have $V_D = V_G$
 - * $V_{DG} = 0$ which makes the MOSFET always in saturation (with some limitations)
 - Constant current source (CCS) biasing: connecting a constant current source at the source to set the DC drain/source current
 - * We can add a bypass capacitor from source to ground, so for AC the capacitor grounds the source
 - $\ast\,$ We can implement the current source using a $current\ mirror$
- The operating range is restricted due to the modes of the transistors
 - Usually at one end we will get triode mode on some resistors and the other end will give us cutoff mode
 - In both cases we would usually get clipping
- The current mirror shown above behaves equivalently to a constant current source
 - Note the current I_{D_1} is mirrored in I_{D_2}
 - This only works if the MOSFETs stays in saturation; Q_1 is feedback biased, so it will always be in saturation, but note Q_2 does not have this guarantee
 - * Q_1 in saturation creates some V_{GS} , which will be copied exactly by Q_2
 - * Assuming that Q_2 has the same parameters, we copy the current in Q_1 exactly to Q_2
- Example: design the above circuit so that all transistors operate in saturation, the current source provides 2 mA, and the drain of Q_3 has a quiescent (i.e. bias point) of $\frac{V_{CC}}{2}$; assume $V_{DD} = V_{SS} =$

 $15 \text{ V}, k'_n = 4 \text{ mA/V}^2, W = 250 \,\mu\text{m}, L = 5 \,\mu\text{m}, V_T = 4 \,\text{V}$

- We know that Q_3, Q_2 must have $I_D = I_S = 2 \text{ mA}$, and due to the current mirror we want Q_1 to have this as well
- At DC we want the drain voltage to be $7.5\,\mathrm{V}$
- Starting with the current mirror:

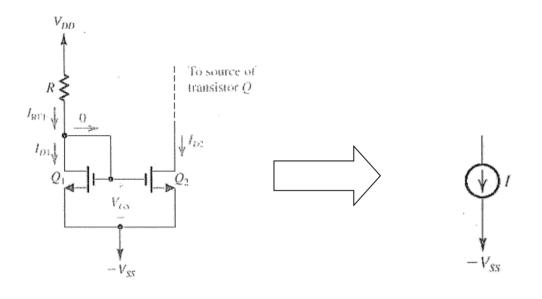


Figure 1: Current mirror circuit.

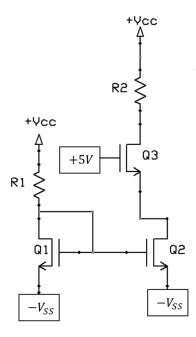


Figure 2: Example circuit using CCS biasing.

- * Q_1 is always in saturation since $V_{DG} = 0$ * $I_{D_1} = \frac{1}{2} k'_n \frac{W}{L} (V_{GS_1} V_T)^2 = 2 \text{ mA}$ * We can now solve for $V_{GS_1} = 4.14 \text{ V}$, discarding the other result of 3.86 V since that gives us cutoff
- * Note that the current in this branch cannot go through any of the gates, so I_{D_1} is also the current through R_1
- * Therefore $V_{D_1} = V_{G_1} = V_{GS_1} V_{SS} = -10.86 \text{ V}$ and use this to find $R_1 = 12.93 \text{ k}\Omega$
- Note $V_{GS_1} = V_{GS_2}$, so if Q_2 is in saturation, we will also get 2 mA on the right
- * We will solve the circuit with this assumption and then check the mode of Q_2 later
- Given that we know V_{D_3} and $I_{D_3} = I_{D_2}$ we can solve for $R_2 = 3.75 \,\mathrm{k}\Omega$
- We've already found all component values, but we need to go back and check our assumptions * For Q_3 , $V_{DS_3} = V_{D_3} - V_{S_3}$; we need to check if this is greater than $V_{GS_3} - V_T = V_{GS_2} - V_T$
 - (since all transistors are the same and must give $I_D = 2 \text{ mA}$)
 - * Since $V_{GS_3} = V_{GS_2} = 4.14 \text{ V}$, this gives us $V_{S_3} = V_{G_3} V_{GS_3} = 0.86 \text{ V}$ use this to check that the inequality is satisfied and Q_3 is in saturation
 - * We also have $V_{D_2} = V_{S_3} = 0.86$ V, so $V_{DS_2} = 15.86$ V > $V_{GS_2} V_T = 0.14$ V, so Q_2 is also in saturation
- Note the saturation mode equation is an approximation since there are other real world effects; in the real world voltages will be slightly different

Small Signal Amplifiers

- The general idea is that we will couple in an AC signal to our MOSFET circuit using capacitors, which will be amplified
- The DC operating point (biasing) of the amplifier restricts its operating range and also how it behaves as an amplifier – voltage gain, effective resistance, effective source/output resistance
- We will often bias the amplifier to operate "halfway" between the boundaries of cut-off and triode mode

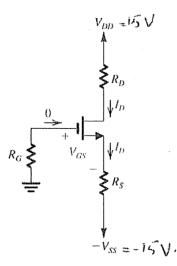


Figure 3: Example.

- Example: design the circuit above so that the MOSFET operates halfway between cut-off and triode mode, with $I_D = 2 \text{ mA}, V_T = 0.8 \text{ V}, k'_n = 50 \text{ }\mu\text{A}/\text{V}^2, W = 200 \text{ }\mu\text{m}, L = 4 \text{ }\mu\text{m}$
 - The output will idle at some value and any time-changing signal will vary the output level
 - This output level is a function of I_D
 - R_D will give us the drain current and R_S will shift the DC centre value
 - At the boundary between cutoff and saturation, both equation will apply; we need to get V_{DS} from these equations

- If $I_D = 0$, then $V_D = V_{DD}$ since no current flows through the resistor, and $V_S = -V_{SS}$; this can give us a value for V_{DS}
- At the boundary of triode, $V_{DS} = V_{GS} V_T$
- $\begin{array}{l} V_{DS} = 0.6 V_{GS} + 14.6 \\ \mbox{ We can get a final condition by using the saturation mode equations} \end{array}$
- This gives us V_{GS} and V_{DS} and lets us find R_S and V_D Doing this however gets us very skewed limits we're very close to cutoff