Lecture 17, Nov 15, 2023

More Design Examples

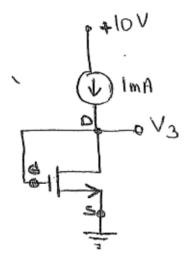


Figure 1: Design example 3.

- Example: feedback biasing: for the MOSFET circuit above, find the drain and source voltage and select a resistor to replace the current source
 - $-V_S = 0$
 - $I_D = I_S = 2 \,\mathrm{mA}$ still because we assume a gate current of 0 at DC

 - $V_{GD}=0$ forces us to be in saturation, since $V_{GD}< V_T$ $I_D=\frac{1}{2}k'_n\frac{W}{L}(V_{GS}-V_T)^2$, so we can solve for V_{GS} and pick the one that gives us saturation: $V_{GS}=3.414\,\mathrm{V}$
 - $V_G = V_S + V_{GS} = V_D$ to solve for V_{GS}
 - With V_{DD} and V_D and the current going through, we can find $1 \text{ mA} = \frac{V_D D V_D}{R_D} \implies R_D = 6.50 \text{ kg}$ $6.59 \,\mathrm{k}\Omega$
 - By itself, this circuit doesn't do much, but we can use it to provide a stable reference current, as a building block in a current source circuit

PMOS Circuits

PMOS Transistor Equations

Thiob Hambison Equations			
	Cutoff Mode	Triode Mode	Saturation Mode
		$V_{DS} \ge V_{GS} - V_t$	$V_{DS} \le V_{GS} - V_t$
Required Condition	$V_{GS} > V_t$	Or	Or
		$V_{GD} \leq V_t$	$V_{GD} \ge V_t$
Determined Condition	$I_D = 0$	$I_D = k_p' \left(\frac{W}{L}\right) \left[(V_{GS} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$I_D = \frac{1}{2} k_p' \left(\frac{W}{L}\right) (V_{GS} - V_t)^2$

Figure 2: PMOS transistor equations.

- For a PMOS, we have to flip the equations as above
- Positive current is defined as source to drain
- Note that V_T is negative for a PMOS, but otherwise has the same magnitude
- Given $V_T = -2 \text{ V}$, find V_D, V_S , determine an equivalent source resistor; assume $k'_p = 1 \text{ mA/V}^2$

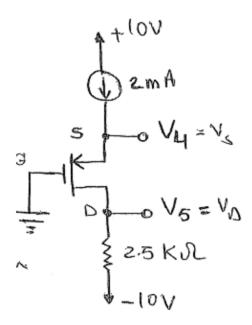


Figure 3: PMOS design example.

- We know $I_S = I_D = 2$ mA, which already gives us $V_D = V_{SS} + R_D I_D = -5$ V * Note the "negative supply" is still called V_{SS} even though it's now connected to the drain $V_{GD} = V_G V_D = 5$ V > -2 V = V_T , so we have saturation mode $I_D = \frac{1}{2} k_p' \frac{W}{L} (V_{GS} V_T)^2$ to get $V_{GS} = -4$ V as the voltage that avoids cutoff $V_S = V_G V_S = 4$ V
- Sanity check: we should normally have $V_S > V_D$ (typically the terminals will be laid out such that the higher voltages are higher on the page)
 - * Due to saturation mode, we expect V_S to be quite a bit larger, which is the case
- This gives $R_S = 3 \,\mathrm{k}\Omega$