Lecture 13, Oct 20, 2023

Diode Shunt Regulator

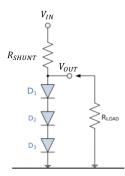


Figure 1: Diode shunt regulator circuit.

- The idea is that we're shunting the current that the load is not using through the diodes
- We expect this to have good line regulation since here V_{out} is essentially equal to the constant voltage drop across all the diodes
 - We can also design it for good load regulation
- Our operating condition are the same as the previous example:
 - Input voltage from 10-15V
 - Load current from 0-1A
 - Desired output is 9V
- We will modify the circuit to have 15 diodes in series instead of 3, all with a piecewise linear model; we will use a shut resistance of $R_{SHUNT} = 3.5 \Omega$
- Since the diodes are all in series, they will share the same state, which we assume to be forward bias
 - Each diode is replaced with a constant voltage drop of $0.5 \,\mathrm{V}$ and a series resistance of $0.1 \,\Omega$ – This leads to a total voltage drop of 7.5 V and resistance of 1.5Ω
- Line regulation: test two cases, $V_{IN} = 10$ V and $V_{IN} = 15$ V, under a load current of $I_{LOAD} = 0$ A
 - In this case the worst-case scenario is reached when the diodes are on the edge of being in reverse bias; this generally happens when we don't pull enough current or pull too much, but it is the former case that is more common
 - Node equation at output: $\frac{V_{OUT} V_{IN}}{R_{SHUNT}} + I_LOAD + \frac{V_{OUT} 7.5}{1.5} = 0$ At $V_{IN} = 10$ V, $V_{OUT} = 8.25$ V

 - At $V_{IN} = 15$ V, $V_{OUT} = 9.75$ V The line regulation is $\frac{9.75 8.25}{9} = 16.7\%$, which is okay (but not very good)
 - * The problem is that the design point for the circuit is different the value of R_{SHUNT} is selected so that we can deliver larger currents; if we had chosen a larger resistance and limited our current range, we will see much better performance
- Load regulation: test two cases, $I_{LOAD} = 0$ A and $I_{LOAD} = 1$ A, under an input voltage of $V_{IN} = 10$ V
 - For pretty much all regulators without feedback, the worst case occurs with minimum input voltage; at minimum input voltage we're the most susceptible to losing forward bias on the diodes
 - * This is referred to as the "dropout voltage", which is the minimum difference between V_{OUT} and V_{IN}
 - $\text{At } I_{LOAD} = 0 \text{ A}, V_{OUT} = 8.25 \text{ V}$
 - $\text{At } I_{LOAD} = 1 \text{ A}, V_{OUT} = 6.5 \text{ V}$
 - * Note if we had assumed that the diodes are all in forward bias, we would have found $V_{OUT} = 7.25 \text{ V}$; this would mean less than 0.5 V per diode, so we lose forward bias
 - * In reverse bias we simply have $V_{OUT} = V_{IN} R_{SHUNT}I_{LOAD} = 6.5 \text{ V}$
 - The load regulation is $\frac{8.25-6.5}{6.5} = 26.9\%$ which is quite bad

- This is a pretty good voltage regulator if we make sure that it does not drop out, so for higher current outputs we need to make sure that the input voltage stays high
- Note that in practice the power consumption of this circuit is quite high

Zener Diodes

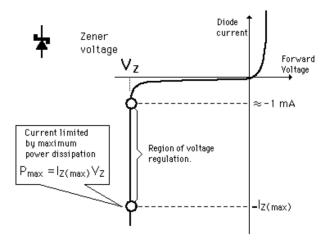


Figure 2: Model of a Zener diode.

- A zener diode is a diode engineered to undergo reverse breakdown non-destructively at a specific voltage
 - In forward bias it behaves similar to a regular diode, but in reverse we're able to get a very specific breakdown voltage that can be quite large
 - Typically zener diodes are used in reverse bias in its zener region
- Most often zener diodes are analyzed using a piecewise linear model; we will use a constant voltage model
 - We can replace a zener diode with just a constant voltage source, provided the reverse voltage is high enough
 - Note that because most diodes have a low voltage dissipation, for a larger zener voltage we will have very low current ratings
 - We neglect the linear resistance since most of the time we will have low current

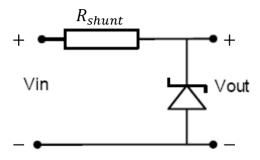


Figure 3: Example problem.

- Example: for the zener shunting regulator above, select the zener voltage V_Z and R_{SHUNT} and determine the current range it operates in; assume $V_{OUT} = 10$ V and V_{IN} is in the range of 12-18V, and the zener diode can dissipate 0.5W of power
 - If we use a constant voltage model we immediately see that $V_{OUT} = V_Z$, so we can select the zener voltage as 10V immediately

- The worst-case scenario for the input voltage is $V_{IN} = 18$ V, which will give the highest current draw
 - * Higher V_{IN} pushes more current through the shunt, which in the worst case will all go through the diode
 - * Under this scenario and assuming $I_{LOAD} = 0$ A the diode dissipates a power of $\frac{18 - V_{OUT}}{P} = 0.5 \,\mathrm{W}$, which we can solve to get $R_{SHUNT} = 160 \,\Omega$ $V_{OUT} \frac{1}{R_{SHUNT}}$
 - * Note we always want to make R_{SHUNT} smaller because this limits the maximum amount of current we can draw
- To see how much current we can draw, we need to consider the worst case V_{IN} * The critical point is when $\frac{V_{IN} V_{OUT}}{R_{SHUNT}} \leq V_Z$ which is when the diode drops out * We also need $I_D \geq 0$ and $I_D = \frac{V_{IN} V_Z}{R_{SHUNT}} I_{LOAD}$; so when $V_{IN} = 12$ V and $I_D = 0$ we get a current limit of 12.5 mA (which is higher for a higher V_{VN}) current limit of $12.5 \,\mathrm{mA}$ (which is higher for a higher V_{IN})
- Zener voltage references are the standard if we want to produce a precise voltage at a low current

Rectifier Circuits

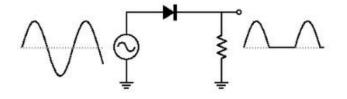


Figure 4: Example half-wave rectifier.

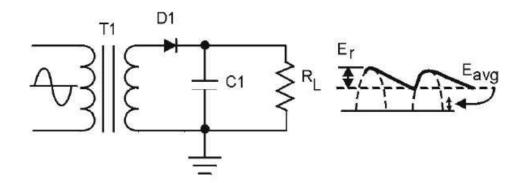


Figure 5: Half-way rectifier with capacitor.

- A rectifier circuit converts an input AC voltage into an output DC voltage
- In the example half-wave rectifier above, the diode will allow current to pass through whenever the AC ٠ voltage is positive, and block it when the voltage is negative
 - However this is produces an output that is far from DC since whenever the AC voltage goes negative, our DC voltage goes to zero
- To counteract this we use components that can store energy capacitors and inductors; this will give us a wavelike output, which we can describe as DC plus some *ripple*
 - The amount of ripple is proportional to the current drawn and inversely proportional to the capacitance
 - Note that this puts a large reverse voltage on the diode, so we need to select the diode accordingly
 - If we attach a capacitor however, we get a large current spike when both the load and capacitor are getting current; therefore we need to make sure that the peak current rating for the diode is

high enough * This also increases the reverse voltage; in the worst case, we can see up to twice the original value