Lecture 11, Oct 14, 2023

Introduction to Diodes

- The diode is our first *active* semiconductor device, i.e. a component with a nonlinear relationship between V and I
- Diodes have two principal states, forward or reverse bias (i.e. on/off)
 - A diode passes currents in forward bias and blocks currents in reverse bias
 - A forward bias has higher voltage at the anode than the cathode and current flows in this direction
- Made of semiconducting silicon which are doped to create positive (P-type) or negative (N-type) charge carriers, forming a PN junction
 - Both P-type and N-type materials have low resistance on their own
 - In the interface between the two regions, we have a depletion region, where the charge carriers "cancel", leaving the high resistivity of the bulk crystalline in a small region
 - Applying a reverse bias tries to push electrons from the N-type material into the P-type, expanding the depletion region and causing no current to pass through due to the high resistance
 - Applying a forward bias does the opposite and shrinks the depletion region
 - * With a smaller voltage the region shrinks but still exists, causing some but not a lot of current to flow
 - * After reaching a critical voltage, the depletion region is fully eliminated and now resistance is low and potentially large currents can pass
- For an ideal diode, we have two regions: in the reverse bias region V < 0, the diode becomes an open circuit and I = 0; in forward bias I > 0, so V = 0 and we model the diode as a closed circuit
 - Using a diode with an op-amp circuit creates an output that is similar to ideal
 - This model is suitable for low-fidelity, quick analyses because it can produce ambiguous results
 - Note the problem here is that we can't really define where the diode switches between the two states, since V = 0 when the diode is a closed circuit
 - * This means that to use the model, we need to first take a guess at the voltage bias on the diode, solve the circuit, and then confirm that our guess was correct
 - * If we assume reverse bias, and find a positive voltage on the diode, we need to flip it
 - * If we assume forward bias, and find a negative current across the diode, we need to flip it

Figure 1: Real-world diode characteristic curve.

- In reality the behaviour of the diode looks more like the graph above
- Improved model 1: constant voltage model
 - Under some fixed voltage V_{D_0} , we model the diode as an open circuit
 - Above this fixed voltage, the diode acts as a closed circuit but with a voltage drop
 - We model it as a constant voltage source of voltage V_{D_0} to represent the constant voltage drop across the diode when it's conducting
 - * Note this is not a true voltage source because it cannot deliver current!
 - 0.6 to 0.7V is a typical voltage drop for a silicon diode

- As with the ideal model, we can start by assuming reverse bias, then checking if the diode has a voltage greater than V_{D_0} ; if it is, then we assume forward bias and solve the circuit again
- With this model, we can also calculate the power dissipation as $P = IV_{D_0}$
- Improved model 2: piecewise-linear model
 - Use an added series resistance to model the change in V vs. I in forward bias
 - In forward bias, we replace the diode with both a voltage drop of V_{D_0} and a series resistance r_D
 - * The condition for forward bias is now $V > V_{D_0}$
 - * With this model, we no longer have an ambiguity in the condition check since the same variable is used for both forward and reverse checks
 - This has better fidelity, but r_D needs to be fitted to real life conditions
 - * The value of r_D can change for low vs. high currents, so if we fit it in one range it will be increasingly less accurate in the other
 - This model is good for a quick analysis of the current and power dissipation through the diode
- Improved model 3: exponential model
 - This model is more accurate but not suitable for hand calculation
 - Forward bias is modelled as $I_D = I_S \left(e^{\frac{V_D}{nV_T}} 1 \right)$
 - Reverse bias is modelled as a constant small reverse current $I_D = -I_S$, so that we avoid ambiguity when checking later
 - The parameters come from the underlying physics:
 - * I_S : saturation current, on the order of 1×10^{-12} A to 1×10^{-15} A; this is the current that flows through the bulk crystalline structure (diffusion of minority carriers)
 - * V_T : thermal voltage, usually 25mV at room temperature; this models the thermal response of the diode
 - Sometimes diodes can heat up, which causes them to pass more current, which in turn causes them heat up even more in a positive feedback loop
 - * n: ideality factor, typically 1-2; this accounts for inaccuracies in our model
 - This model has near-perfect fidelity, but is not suitable for hand calculation
 - Procedure:
 - 1. Assume some initial guess for I_D using the constant voltage model
 - 2. Calculate the diode voltage from I_D by reversing the model
 - 3. Treat the diode as a constant voltage drop we just calculated, and find the current through the diode by solving the rest of the circuit
 - 4. Repeat the previous steps until the change to the diode current between iterations is small, which indicates that we've reached a sufficient degree of precision
 - We could also start with a voltage guess and iterate based on that, but since the model is much less sensitive to current, having a bad current guess is much better than having a bad voltage guess
- If a sufficiently large reverse voltage is applied, the diode can break down
 - The large electric field creates additional temporary charge carriers, causing an avalanche effect; substantial reverse current can flow in breakdown
 - This effect is not permanent and can be reversed if the voltage/current drops
 - Most of the time this is undesirable; it's hard to take advantage of because the breakdown voltage is hard to predict
- The transition between forward and reverse modes takes a nonzero amount of time, during which current can flow in the wrong direction
 - The reverse recovery time T_{rr} is the time required for the transition
 - During T_{rr} , even though the voltage should put the diode into reverse bias, it will keep conducting
 - This can lead to destructing of the diode
 - Some diodes are faster; a typical diode recovers in about 1ms, with special diodes (e.g. Schottky) bringing this down to 10ns or less
 - However there is a tradeoff between the reverse recovery time and other design parameters