
Lecture 1, Sep 8, 2023
The Need for Frequency Domain Analysis

Figure 1: Summary of frequency domain analysis.

• Frequency domain analysis techniques allows us to more easily design filters that manipulate different
frequencies in signals

• We can pass the input signal through a Fourier transform to get sinusoids, which are very easy to work
with in the Laplace domain with e.g. Bode plots (change of output vs. frequency), from which we can
directly find the output signal of a filter

– Bode plots can be obtained from both a theoretical design and a real circuit, and even from
elements like motors that aren’t circuits but behave similarly

Note

Generally, not every time domain function has a Laplace transform and not every function in the
Laplace domain has an inverse. However in this course we will assume that the transforms and inverses
always exist for sake of simplicity.

Poles and Zeroes
Note

Complex numbers in this course are represented as

s = σ + jω

where j is the imaginary unit, j2 = −1, and σ and ω are the real and imaginary parts respectively.
When we wish to represent a pure frequency, we will use only the imaginary jω, where ω is the
frequency of the signal in radians/s.

• Complex functions are represented as F (s) = Fx + jFy

– F can represent a signal, or a transfer function
• A complex function G(s) is analytic in a region if G(s) if it and all its derivatives all exist; these are

known as ordinary points and don’t tell you much
– Points where G(s) is not analytic are singular points, which are important indicators of what the

signal looks like or how the transfer function behaves
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Definition

Singular points where G(s) or its derivatives approach infinity are known as poles of the function; if
lim
s→p

G(s) = ∞ and
G(s)(s + p)n

has a finite, non-zero value at s = −p, then it is a pole of order n.

Definition

Singular points where G(s) or its derivatives approach zero are called zeroes of the function.

• Poles indicate places where the frequency response changes in a filter; e.g. where the frequency cutoff
between pass and block happens

• Zeros determine behaviour indirectly by interacting with poles; they somewhat cancel out the effect of
a pole

– Using zeros, we can add zeros to change the system’s behaviour
• Example: (s + z)

(s + p) has a zero at s = −z and a pole at s = −p

– If z and p are far apart, the zero doesn’t really do much
– As the zero and pole get closer, they interact in the transient (short-term) domain
– If z = p, the pole and zero can also cancel out

• Example: G(s) = K(s + 2)(s + 10)
s(s + 1)(s + 5)(s + 15)2

– Note how we factored the signal into a form where the poles and zeros are easily identified
– Poles: 5 total at s = 0, −1, −5, −15 (last one is order 2)

* We will see that when poles are stacked on each other, it amplifies their effect
– Zeroes: 2 (finite) total at s = −2, −10

* Strictly speaking we will also have 3 more zeros at s → ±∞, since the numerator is degree 2
and denominator is degree 3

– Based on this, we can see 3 terms exponentially decaying, 1 step (constant), and some transient
up-down behaviour in the signal; we can see this by looking at properties of the Laplace transform:

* Terms that are 1
s + α

are exponential decay e−αt

• Note that α has to be a purely real number for it to be exponential decay
* Terms that are 1

s
are steps

* The poles at -1, -5, and the zero at -2 influence each other to lead to transient behaviour

Important

As a general rule of thumb, if the poles and zeros are in the same order of magnitude, they will
interfere leading to transient behaviour; the closer the pole is to the zero, the greater the effect in the
short term but the more they cancel in the long term.

• Note that functions that grow faster than an exponential do not have Laplace transforms since they do
not converge, but we never want to analyze these functions anyway

• The linearity of the Laplace transform allows us to break time domain signals into sinusoids, which are
very easy to work with

• Some common Laplace transforms:
– A decaying exponential transforms to A

s + α
where α is a positive real constant

– A step transforms to A

s
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– A ramp function (e.g. f(t) = t) transforms to A

s2

– A sinusoid transforms to Aω

s2 + ω2

* This means if we have a pair of poles at s = ±jω, it corresponds to a sinusoid

Figure 2: Poles plotted on the imaginary plane.

• Notes for the figure:
– Poles are often marked with X on the imaginary plane
– Points labelled A are purely real and negative, so they are of the form 1

s + α
which gives us

exponential decay
* The further away the pole is from zero (i.e. bigger α), the faster the decay

– The point labelled B is of the form 1
s

which gives us a unit step or constant offset
– All points on the right are exponential growth (unstable poles), which are intangible in real circuit

design, so in practice we don’t care about them
– Points labelled C are purely imaginary and come in conjugates, which are sustained oscillations

(sinusoids)
– Points labelled D have both imaginary and negative real parts, which gives us an exponentially

decaying sinusoid
* The frequency is sin(ωt) and decay follows e−σt

Lecture 2, Sep 13, 2023
Key Properties of the Laplace Transform

• The basic impulse function is given by g(t) =

 lim
t0→0

A

t0
0 < t < t0

0 elsewhere
– L {g(t)} = A

• Multiply by e−αt in time domain is a shift in frequency domain
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– L
{

e−αtf(t)
}

= F (s + α)
– By shifting the signal in the frequency domain, we introduce an exponential decay in the signal –

this can be used to remove poles that we don’t want to modify the steady-state behaviour
• A change of time scale in the time domain corresponds to a scaling in frequency domain

– L
{

f

(
t

a

)}
= aF (as)

– This allows us to manipulate frequencies while keeping other important information such as phase
intact

• Differentiation in time domain is equivalent to multiplication by s in the frequency domain

– L
{

d
dt

f(t)
}

= sF (s) − f(0)

– Note that if there is an impulse at t = 0, two separate Laplace transforms must be used
– This allows us to implement differentiation circuits

• Final value theorem: lim
t→∞

f(t) = lim
s→0

sF (s)
– To find the steady-state behaviour for a stable, settling system, we can use this limit in the

frequency domain, which is often much easier to evaluate
• Initial value theorem: lim

t→0+
f(t) = lim

s→∞
sF (s)

– This can be used to find the initial conditions, provided the limit exists in the Laplace domain
• Multiplication by t in the time domain is differentiation in frequency domain:

– L {tnf(t)} = (−1)n dn

dsn
F (s)

• Convolution in time domain is multiplication in Laplace domain:

– L {f1(t) ∗ f2(t)} = L
{� t

0
f1(t − τ)f2(τ) dτ

}
= F1(s)F2(s)

– This can be used to easily determine the output of a system given some input signal

Circuits in Frequency Domain
• In frequency domain Ohm’s law becomes V (s) = I(s) · Z

– The impedance Z has both real and imaginary components, unlike in normal Ohm’s law
• Resistors behave the same regardless of frequency, so Z = R for resistors
• However capacitors and inductors behave differently depending on frequency

Figure 3: An inductor in time and frequency domain.

• An inductor in frequency domain is separated into two parts: the impedance Z = sL for the steady-state
conditions, and another part that responds to initial conditions; when we analyze steady-state behaviour,
we can ignore the second part

– v(t) = L
di(t)

dt
=⇒ V (s) = sLI(s) − Li(0)

– Notice that for DC current, s = jω = 0 so the inductor becomes an open circuit in steady state
– For higher frequencies, s increases so the impedance also increases

Figure 4: A capacitor in time and frequency domain.
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• A capacitor similarly has impedance Z = 1
sC

and another part responding to initial conditions

– i(t) = C
dv(t)

dt
=⇒ I(s) = CsV (s) − CV (0) =⇒ V (s) = 1

sC
I(s) + 1

s
V (0)

– For DC current, the capacitor behaves as an open circuit (infinite impedance)
– For higher frequencies, the impedance decreases

• Any calculations that we could do with Ohm’s law in time domain, we can do in frequency domain
with impedances

– This applies to techniques such as nodal analysis, mesh current, etc
– Crucially, superposition also holds

Summary

To transform circuits into the frequency domain:
• Resistor: Z = R
• Inductor: Z = sL plus a source with voltage V (s) = Li(0) for initial conditions

• Capacitor: Z = 1
sC

plus a source with voltage V (s) = v(0)
s

for initial conditions

Figure 5: Example problem.

Figure 6: Example problem in frequency domain.

• Example: consider the circuit above where the capacitor is charged to a voltage of vc = vc0 ; the switch
is closed at time t = 0; find the resistor voltage v(t)

– First transform the circuit into frequency domain as shown above; note the capacitor transforms
into two sources due to initial conditions

– vc0

s
− I(s) 1

sC
− I(s)R = 0

* Note that we’re looking for V (s) = I(s)R

* I(s)
(

R + 1
sC

)
= vc0

s
=⇒ I(s) =

vc0
s

R + 1
sC

=
1
R

s + 1
RC

vc0

• Tip: to save time, avoid merging terms or normalizing until the very end
• To normalize, we should do it so that the highest power of s in the dominator has a

coefficient of 1
• We can clearly see that there is a pole at s = − 1

RC
, corresponding to an exponential

decay as we expected
* Multiplying by R we get V (s) = 1

s + 1
RC

vc0 so v(t) = u(t)vc0e− 1
RC t
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Lecture 3, Sep 15, 2023
Example: Solving For Steady-State Behaviour in the Frequency Domain

Figure 7: Example problem.

Figure 8: Example problem in frequency domain (steady state).

• Example: find the steady-state current through the inductor iL(t), given i(t) = 24mA (DC) and no
initial conditions

– In the long term we expect all the current to go through the inductor; let’s verify this
– In the short term we expect the capacitor and inductor to cause oscillations
– We will first solve for the voltage across the inductor using node voltage, making the bottom node

the ground
* i(t) = 24u(t)[mA] =⇒ I(s) = 0.024

s
[A]

* −I(s) + sCV (s) + RV (s) + V (s)
sL

= 0 =⇒ V (s) =
0.024

s

sC + R + 1
sL

* Normalize:
0.024

C

s2 + 1
RC s + 1

LC

• The s2 in the denominator gives us two possible outcomes: two real-valued poles (two
pure exponential decays) or a complex conjugate pair (decaying sinusoid)

– I(s) = V (s)
sL

=
0.024
LC

s
(
s2 + 1

RC s + 1
LC

)
* The additional 1

s
this introduces would give us a unit step

* The overall behaviour is a sudden increase at t = 0 with some small oscillations, which
eventually decay to just a constant DC value

* If we sub in the values we get: 384 × 105

s(s + 32000 + 24000j)(s + 32000 − 24000j)
• The 32000 is the rate of decay; the 24000 is the frequency of oscillation

– To find the steady-state behaviour, we could inverse Laplace transform I(s) and take the limit as
t → ∞, but it’s much easier to use the Final Value Theorem and do it in the Laplace domain

* lim
t→∞

i(t) = lim
s→0

sI(s) = lim
s→0

384 × 105

(s + 32000 + 24000j)(s + 32000 − 24000j) = 0.024[A]

* Note that we can only do this because all the poles of I(s) have negative real parts, i.e. it
trends towards a steady DC value

• Example: same problem as above, but the current source is now i(t) = (0.024) cos(40000t)
– At a fixed frequency, the impedance of the capacitor, resistor, and inductor all have fixed and

finite impedances, so this behaves like 3 resistances in parallel; we would expect that the shape of
the signal remains the same, but its amplitude decreases
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– I(s) = 0.024s

s2 + 400002

– −I(s) + sCV (s) + RV (s) + V (s)
sL

= 0 =⇒ V (s)
(

sC + 1
R

+ 1
sL

)
= 0.024 s

s2 + 400002

– V (s) = 0.024
C

(
· · ·(

s2 + 1
RC s + 1

LC

)
(s2 + 400002)

)
= · · ·

(s + 32000 ± 24000j) (s ± 40000j)
* We have a combination of a sustained oscillation and a decaying oscillation
* In the long term only the sustained oscillation will remain

– What happens if we try to apply the FVT?
* We end up with an s2 in the numerator after cancelling terms, so the FVT tells us it is zero
* However we know that the long-term behaviour is a sustained oscillation, not a DC zero
* This does however tell us the DC offset, but it is misleading

– To analyze this, we’ll have to actually do the inverse Laplace transform
– In reality, since the time constant is very large for the decaying oscillation, it will decay out in

only half a cycle of the sustained oscillation, so its effect is barely noticeable

Transfer Functions
Definition

A transfer function H(s) in the frequency domain is the ratio of the output to input of a system in
the Laplace domain:

H(s) = Y (s)
X(s)

where Y (s) is the output and X(s) is the input in Laplace domain.

• A transfer function captures the system’s response to inputs, so if we have a transfer function, we can
determine the system’s response to any input

– These can be derived from the circuit or measured by injecting a known signal
– We can also go back from a transfer function to a practical circuit design
– We can get the output by simply Y (s) = H(s)X(s), which corresponds to a convolution in time

domain
• We will restrict ourselves to circuits that are SISO (single-input, single-output); to work with MIMO

systems, we need to use matrix notation
• We will also assume that H(s) is time-invariant
• Crucially, if we have multiple circuits connected in series, the overall transfer function is just the product

of all the individual transfer functions
– This allows us to design circuits in blocks which drastically simplifies and speeds up design
– Note that this assumes no loading effects!

Important

A loading effect happens when the transfer function of the first circuit changes due to current drawn
by the second circuit. This happens when the first circuit has finite output impedance and the second
circuit has finite input impedance. When there are loading effects, we cannot simply multiply transfer
functions.

• Circuits made of regular passive components always have loading effects, but we can use op-amps to
get rid of them

– The ideal op-amp can drive any load, so it would have no loading effect at all

• Example: find the transfer function of the circuit above, where the output vout(t) is taken from the
top-right node
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Figure 9: Example LC tank circuit.

– For the capacitor and inductor, Zeq = 1
1

sL + sC
=

s
C

s2 + 1
LC

– Now we can treat it as a voltage divider, so Vout(s) = Vin(s) Zeq

Zeq + R

– H(s) = Vout(s)
Vin(s) =

s
RC

s2 + 1
RC s + 1

LC
– This circuit is a band-pass filter – it passes only a narrow band of frequencies, and for frequencies

higher or lower, it essentially eliminates them
– What happens if the output was connected to another copy of the circuit?

* We expect loading effects to happen since the circuit is made of only passive components
* Let Vx(s) be the voltage at the output of the first circuit
* Vx − Vin

R1
+ Vx

1
sC1

+ Vx

sL1
+ Vx − Vout

R2︸ ︷︷ ︸
loading effect!

= 0

* If we solve this and compare to what we get by multiplying transfer functions, we see that the
s3 and s terms in the denominator are different

Lecture 4, Sep 20, 2023
Transfer Functions of Op-Amp Circuits

Figure 10: Example integrator op-amp circuit.

• Example: find the transfer function for the circuit above
– As a shortcut, we can notice how this resembles an inverting amplifier, so we can use the same

formula and replace the resistances with impedances
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* Recall that for an inverting amplifier Vout

Vin
= −R2

R1
, so in this case we have H(s) = −Z2

Z1
=

− 1
sRC

– If we couldn’t rely on the shortcut, we must use KVL at the inverting input
* Vx − Vin

R
+ Vx − Vout

1
sC

= 0

* Since there is a valid negative feedback path, we know the voltage at the inverting and
noninverting inputs are equal; therefore Vx = 0

* Using this, −Vin

R
− sCVout = 0 =⇒ Vout

Vin
= − 1

sRC
– We couldn’t have used KVL at the output node, because the op-amp has a current output that we

do not know
– Since multiplying a signal by 1

s
in the frequency domain is equivalent to an integration (because

multiplication by s is differentiation), this circuit is an integrator for the input signal
– Note: in practice, capacitors don’t hold their charge perfectly; since the capacitor is effectively

keeping track of the integration state, the capacitor leaking charge leads to errors; in addition,
real noise is often not zero-mean, so noise in the signal may accumulate

Figure 11: Example differentiator op-amp circuit.

• Example: find the transfer function for the circuit above
– H(s) = −Z2

Z1
= − R

1
sC

= −sRC

– Multiplication by s is a differentiation in time domain, so this circuit is a differentiator
– Note that this and the integrator are frequency limited; they may not respond properly with very

high frequencies
• When there are multiple inputs, we can find the transfer functions for each input separately; however

we have to assume that the other inputs are at some fixed known voltage, usually zero

• Example: find the transfer function for the circuit above
– Notice that we can break this into the 4 individual op-amp circuits: the inverting amplifier U1,

the integrator U2, the differentiator U3, and summing amplifier U4; we will find transfer functions
for each one individually and combine them

– Note: this is a PID circuit, where an input error is scaled, integrated, and differentiated, and then
combined together to form the control output

– H1(s) = −R2

R1
, H2(s) = − 1

sR3C1
, H3(s) = −sR4C2

* Note our assumptions: no loading effects at the input or output

– For the summing amplifier, Y (s) = −
(

R8

R5
A(s) + R8

R6
B(s) + R8

R5
C(s)

)
– Therefore H(s) = Y (s)

E(s) = R2R8

R1R5
+ R8

R3R6C1

1
s

+ R4R8C2

R7
s
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Figure 12: Example PID control loop circuit.

– Bringing this back to the time domain, we have y(t) = KP e(t) + KI

�
e(t) dt + KD

d
dt

e(t)

Lecture 5, Sep 22, 2023
Analyzing Complex Op-Amp Circuits

Figure 13: An inseparable op-amp circuit.

• Example: find the transfer function of the above circuit
– There is only one op-amp so we can’t break this circuit down; we must write multiple node

equations
– We should write node equations at the inverting input (Vy) and the node to the right of Vin (Vx)
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* We also know that Vy = 0

– Vx − Vin

R1
+ sC2Vx + Vx − Vout

R2
+ Vx

R3
= 0 =⇒

(
sC2 + 1

R1
+ 1

R3
+ 1

R2

)
Vx +

(
− 1

R1

)
Vin +(

− 1
R2

)
Vout = 0

– −Vx

R3
+ −sC1Vout = 0 =⇒ Vx = −sR1C3Vout

– Sub back to get H(s) =

(
1

R1

)
−s2C1C2R3 +

(
− C1R3

R1
− C1 − C1R3

R2

)
s +

(
− 1

R2

)
* Normalize: −

1
C1C2R1R3

s2 +
(

− 1
C2R1

+ 1
C2R2

+ 1
C2R3

)
s +

(
1

C1C2R2R3

)

Figure 14: Example circuit to find the equivalent impedance.

• Example: find the equivalent input impedance of the circuit above
– We want to find an input current Iin caused by an input voltage Vin, then we can find the

impedance as Vin

Iin
– Note we can’t write useful node equations at the node between R1, R2 or the node between R3, C4

because they are both connected to the output of op-amps
– The node between R2, R3 and the node between C4, R5 have the same voltage as Vin due to the

op-amp feedback
– Node equations:

* Vin − VA

R1
− Iin = 0 =⇒ VA = Vin − R1Iin

* Vin − VA

R2
+ Vin − VC

R3
= 0 =⇒ Vin

(
1

R2
+ 1

R3

)
+ VA

(
− 1

R2

)
+ VC

(
− 1

R3

)
= 0 =⇒ VC =

Vin − R1R3

R2
Iin

* sC4(Vin − VC) + Vin

R3
= 0 =⇒ −sC4R1R3

R2
Iin + 1

R5
Vin = 0

* Zeq = Vin

Iin
= s

(
C4R1R3R5

R2

)
– If we let C4R1R3R5

R2
= L, we see Zeq = sL – this circuit is an inductance simulator

– Inductors are very hard to work with at a small scale, so circuits like these are often used to
replace inductors with other components

– Note this only simulates the frequency response of an inductor, but not other aspects like the
energy storage
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Real-World Op-Amps

Figure 15: Equivalent internal model of a real-life op-amp.

• Real-world op-amps have several differences compared to ideal op-amps:
1. Feedback loops: the degree of negative feedback (output to inverting input) must be greater than

the degree of positive feedback (output to noninverting input) for the system to be stable
– For our purposes, we assume that the feedback is sufficient as long as there is a path from the

output to the inverting input
2. Finite input impedance: the impedance looking into the terminals is finite, which means that a

small current can flow into the inputs
– This impedance is frequency dependent but most of the time it suffices to model as a simple

resistance
– The input impedance is often in the range of megaohms to gigaohms, even for cheap op-amps
– In most cases, the assumption that no current flows in is valid, unless the external resistances

attached are on the same order of magnitude (or greater) than the internal resistance
3. Nonzero input offset: the difference between the voltages on the terminals is nonzero due to the

finite open-loop gain
– This is often in the range of millivolts or nanovolts, so it will not affect the circuit in most

cases
– This does not matter most of the time, but for particular sensitive circuits or filters it needs

to be accounted for
4. Finite open-loop gain: the op-amp output voltage is vout = (v+ − v−)A0 where A0 is the open-loop

gain; in a real-world op-amp, this gain is finite
– This means that the feedback control is not perfect, and so the difference between the voltages

of the two inputs is nonzero
– In modern op-amps, the gain is often around 100,000 for cheaper modern op-amps, or up to

millions for better ones
* For older technology this could be in the thousands

– To see if this will have an impact, we need to compare the op-amp gain to the function of the
circuit we’re trying to implement

* e.g. if we’re trying to make an inverting amplifier, and the gain we want is within an order
of magnitude of the open-loop gain, then it could be problematic

5. Finite bandwidth, conditional stability, and not linear time-invariant (LTI): real op-amps can be
frequency-limited, can have stability issues, and may not be perfectly linear time-invariant

– The bandwidth is usually limited to megahertz to gigahertz ranges
– The op-amp should be at least an order of magnitude faster than the operating range of the

circuit
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6. Nonzero output impedance: the impedance of the output is nonzero, so the amount of current we
can draw is finite

– Drawing too much current would start causing considerable loading effects
– The output resistance is typically in the range of ohms to kilohms
– Since we’re usually using kilohm-level resistances in our circuits, this could be a very common

issue
• Additionally, real-world op-amps must be powered by some pair of voltages Vdd, Vss, which restricts the

range that Vout can take on
– If we expect the output voltage to be outside this range, it is capped instead
– When the waveform is cut off due to op-amp output limits, it is referred to as clipping
– Clipping may not happen right at the supply voltage; there may be a small gap and clipping

happens slightly below the supply voltage

Lecture 6, Sep 27, 2023
Bode Plots

• Motivation: we need a good tool to predict what a circuit will do to a wide range of signal frequencies
• Example: H(s) = 1

Ts + 1 with y(t) = A sin(ωt)
– We will always get a sine wave of the same frequency
– However the phase and the amplitude of the output will be different
– In general, all LTI systems have this property

• A Bode plot shows, for different frequencies in logarithmic scale, how a system changes the phase and
amplitude of an input sinusoid

– The information from both parts of the Bode plot are equivalent to all the information from the
transfer function/pole-zero plot

Figure 16: Magnitude Bode plot for the example transfer function.

• For the magnitude plot, a Bode plot shows the ratio of output amplitude over input amplitude in
decibels – dB = 20 log10

Aout

Ain
– At −3dB, we consider the output amplitude to have started deviating considerably
– A typical Bode plot for a single pole looks similar to the example figure, with a horizontal segment

where frequency has little effect, and a diagonal segment where increasing frequency significantly
affects the output
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* The inflection point is the location of the pole; this is known as the cutoff frequency or corner
frequency

* After the pole location, each decade of increase in frequency leads to about −20dB of amplitude
difference

Figure 17: Phase Bode plot for the example transfer function.

• For the phase plot, the phase shift angle in degrees is shown
– The phase plot can be approximated by 3 segments, with 2 horizontal ones and a diagonal one
– In the diagonal segment, the phase decreases by −45° per decade
– The pole location is at the center of the diagonal segment of the phase plot; it has a phase shift of

−45°
• A complete Bode plot requires both a magnitude and a phase plot

Lecture 7, Sep 29, 2023
Sketching Bode Plots

• Many common software tools exist to create Bode plots, but we are interested in sketching them by
hand since this allows us to go from desired behaviour back to circuit

• Note that the behaviour that we discussed previously is for a single pole; if there are multiple poles/zeroes,
their effects add together

• Since the horizontal axis is logarithmic, the zero frequency would be infinitely to the left
– If our pole is at ωc = 0, the cutoff frequency would be off the plot, so we only see a diagonal line

of −20dB per decade
– The same goes for the phase plot; we almost always have a −90° shift since the diagonal section is

mostly off the plot
– For such a pole we have exactly 0dB at ω = 1 so we can draw a line through this point with the

slope

• Zeros are effectively the opposite of poles
– For a zero at origin, we now have a constant slope of +20dB per decade for the magnitude plot

and a +90° phase shift always
– Compared to a pole, the effect of a zero is effectively the same as a pole but reflected across the

0dB/0° lines

14



Figure 18: Bode plot for a pole at zero frequency.

Figure 19: Bode plot for a zero.
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• Note that for a phase shift the vertical axis wraps around (360° = 0°); by convention we try to keep it
near zero

• In the case of constant gain ±K, on the magnitude plot we have a constant value of 20 log1 0(|K|), but
the phase plot is either a constant 0° if K > 0 or ±180° if K < 0, since an inversion is equivalent to a
180° phase shift

Figure 20: Bode plot for underdamped poles.

• In the case of underdamped poles and zeroes, we have a quadratic factor in the transfer function so the
Bode plot is much more complicated

– We will not deal with this much in this course, but be aware that our linear approximations will
no longer work

– These poles mostly have no change at lower frequencies and gives −40dB per decade at higher
frequencies (which corresponds to the fact that they factor into two poles)

– For the phase plot the total phase shift is −180° at higher frequencies (since each pole contributes
−90°); however the slope and shape of the phase plot changes significantly depending on the value
of ζ

– However at frequencies near ωn (the natural frequency) we hit a peak, which increases as ζ (the
damping factor) decreases; this corresponds to a resonance

– For the magnitude plot we will have to split it into 3 or 4 segments to accommodate the peak
• Our linear approximation will not exactly match the real plot; we can attempt to correct for this error

– For the magnitude plot, we can apply a correction of ±3dB per pole at ω ≈ ωc and ±1dB at
ω ≈ 2±1ωc

* We can also use a correction graph but this is often not needed
– For the phase plot, near ω = ±2±1ωc, |ϕ| = 26.6° or 63.4°; at ω ≈ 10±1ωc, |ϕ| = 5.7° or 84.3°

• To graph a Bode magnitude plot by hand:
1. Factor the transfer function into distinct poles and zeroes

– If we can’t do this then the system is probably not LTI, or if there are complex poles, it will
be very difficult for us to do

2. Determine the starting point of the graph: we want the graph to start at around a factor of 10
smaller than the smallest (nonzero) pole/zero

– This allows us to avoid most of the error at the start of the graph; since the entire graph is
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going to be relative to this point, if we have errors at the start the entire graph will be shifted
– Now we need to determine the start gain in decibels
– If poles and zeros are at at least 10rad/s and we are starting at 1rad/s, we can simplify this

to Kstart = |K|z1z2 · · · 1
p1

1
p2

· · ·, i.e. the product of all the poles and zeros

* This works because at 1rad/s, poles and zeroes at a frequency of zero contribute nothing
to the magnitude

* We need other poles and zeros to be much bigger than 1 so our approximation works
– Otherwise, we must sub in s = jω manually for the starting ω and work out the initial

magnitude by brute force calculations
– Remember to convert Kstart back to decibels!

3. Begin drawing at Kstart (in decibels)
– If we’ve picked our starting frequency properly, then we should be in the flat region of all

nonzero poles and zeros
– If there are no zero poles and zeros we start directly at this frequency, otherwise we account

for them
4. Draw a straight line to the next corner frequency using the current slope
5. Update the rate of change based on which poles and zeros are active, and then repeat until we

finish all segments
– For each zero that’s active, add +20dB per decade; for each pole add −20dB per decade

• The phase plot can be graphed in a similar way:
1. Factor the transfer function into distinct poles and zeroes
2. Determine the starting point of the graph
3. Group and sort all corner frequencies

– Instead of the ωc themselves, take 0.1ωc and 10ωc which corresponds to the start and end
points of the influence of each pole and zero

4. Begin drawing at the starting point
– Note each pole or zero at the origin will introduce a constant ∓90° shift

5. Draw the line segments and update the rate of change
– Each pole or zero introduces a ∓45° per decade on the rate of change and contributes ∓90° in

total
– To check, count the number of poles and zeros and make sure that the endpoint is exactly

90°z − 90°p from the starting point, where z is the number of zeros and p is the number of
poles

• Example: Graph the Bode plot for the transfer function: H(s) = s2 + 10010s + 100000
s2 + 1000s

– First we graph the magnitude plot:
1. Factor the transfer function: H(s) = 1(s + 10)(s + 10000)

s(s + 1000)
* We have 2 real poles (with one at the origin), 2 real zeros, and a positive pure gain
* Since there is an equal number of poles and zeroes their effect cancels in the long term

2. Find the initial magnitude: Kstart = (1)
(

1
1

)(
1

1000

)
(10)(10000) = 100 =⇒ KstartdB

=

40dB and the starting point, which we choose to be 1rad/s which is a decade below the
smallest pole/zero

* Since the gain is positive we don’t need to start with a −180° phase
* The starting slope is not flat but −20dB per decade since we have a pole at the origin
* Since we start at ω = 1 the pole at origin does not affect the starting magnitude
* We can also use the shortcut to compute Kstart which would not have been possible if we

started at some other frequency
3. Group the poles and zeros:

* ω = 0; pole at origin; −20dB per decade
* ω = 10; zero; flat slope after this
* ω = 1000; pole; −20dB per decade after this
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* ω = 10000; zero; flat slope after this
4. Draw all segments of the plot

– See figures below for the completed plot; notice that it is fairly similar to the exact plot, except at
the corner frequencies

– Now for the phase plot:
1. Factor the transfer function in the same way
2. Find the starting phase shift and starting frequency

* A positive starting gain would normally correspond to a 0° starting shift, but we have a
pole at the origin, so we start at −90°

* For this plot we shouldn’t start at 1rad/s anymore, because the zero at ωc = 10 generates
two inflection points at 1 and 100rad/s

3. Organize the poles and zeros and their effects:
* ω = 0; pole at origin
* ω = 1; start zero at ω = 10
* ω = 100; end zero at ω = 10 and start pole at ω = 1000
* ω = 1000; start zero at ω = 10000
* ω = 10000; end pole at ω = 1000
* ω = 100000; end zero at ω = 10000

Figure 21: Magnitude plot for the example transfer function.

Figure 22: Exact magnitude plot created in Maple.
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Figure 23: Phase plot for the example transfer function.

Figure 24: Exact phase plot created in Maple.
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Lecture 8, Oct 4, 2023
Bode Plot Example

• H(s) = − s(s + 100)(s + 10000)
(s + 10)(s + 500)(s + 1000)

• Note the phase plot will be a bit more complex since the negative sign introduces a 180° phase shift
• For the magnitude plot:

– Since the smallest pole/zero is at 10, we can use the simplification to find the initial magnitude

* Kstart = (1) (100)(10000)
(10)(500)(1000) = 1

5 = −14dB

– The starting slope is +20dB per decade from the single zero at zero frequency
• For the phase plot:

– The starting phase shift is 90° from the zero at the origin, plus or minus 180° due to the negative
sign; we will choose −90°

Lecture 9, Oct 6, 2023
From Bode Plot to Transfer Function

• We can reverse a Bode plot back into a transfer function by examining the magnitude plot:
– Start by looking at the graph and finding all the inflection points – these are the pole and zero

corner frequencies
– Reverse the change in slope to find the multiplicities of the poles/zeroes
– Check for poles and zeros at the origin
– Pick any point on the graph, and use this to solve for the pure gain on the transfer function
– Note if we started with an exact bode plot, we have to first estimate the asymptote plot (however

this is relatively rare since reversing a bode plot is often used as a design tool)
• However, if we only look at the magnitude graph, we do not get a unique solution – there are multiple

transfer functions that will give you the same magnitude plot, but not the same phase plot
– Most of the time we don’t care about the phase change when working with filter design
– This could matter a lot in e.g. control systems
– It also limits us to systems with magnitude rates of change being multiples of 20dB per decade;

transfer functions with complex components can be problematic

Figure 25: Phase plot for the example problem.

• Example reverse the Bode phase plot above:
– We see inflection points at 50, 50k, and 1M, which are the corner frequencies
– At 1M, the slope changes from +20dB per decade to 0, so a pole with multiplicity 1 became active
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– At 50k, the slope changes from −20dB per decade to +20dB per decade, so a zero with multiplicity
2 became active

– At 50, the slope changes from 0 to −20dB per decade, so a pole with multiplicity 1 became active
– We started with a flat slope, so there is no pole or zero at the origin

– Therefore the transfer function has form |K|(s + 50000)2

(s + 50)(s + 1000000)
– At ω = 1 the magnitude plot has value 34dB = 50.119; in our transfer function we have

|K|(50000)2
(

1
50

)(
1

1000000

)
= 50K

* Note we could choose this because the first corner frequency is more than a decade greater

– Therefore |K| is about 1, so H(s) = (s + 50000)2

(s + 50)(s + 1000000)
* Note that we could’ve set K = ±1 and we would get the same magnitude; this would be

reflected in the phase plot

From Transfer Function to Circuit

Figure 26: The inverting amplifier as a building block.

• Due to our simplifications, the simplest way for us to do this is to use a bunch of op-amp building
blocks

– Note this is an easy way, but not an optimal way
• Each inverting amplifier can (usually) give us up to one pole and one zero
• To get the desired Z1, Z2 to make the poles, we can choose a resistor and either an inductor or a

capacitor
– In practice capacitors are preferred because they are much cheaper and available in a wider range

of values
– However capacitors have a shorter lifespan (tens of thousands of hours vs. decades for inductors)
– Capacitors are better at the lower frequencies while inductors are better at higher frequencies
– In addition, we can also do resistors and capacitors/inductors in series or parallel, giving us a total

of 4 choices per impedance
* This means 16 possible combinations! Some of these can implement more advanced functions

such as double poles/zeros
– Example combination:

* Both resistor and capacitor in series: Z1 = R1 + 1
sC1

, Z2 = R2 + 1
sC2

, then the transfer

function has a pure gain of K = −R2

R1
, a pole at 1

R1C1
, and a zero at 1

R2C2
* Both resistor and inductor in series: Z1 = R1 + sL1, Z2 = R2 + sL2, then the transfer function
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has a pure gain of K = −L2

L1
, a pole at R1

L1
and a zero at R2

L2
• In the real world, we need to choose realistic component values:

– Resistors from 100Ω to 4.7MΩ
* Too low and we’ll get opamp loading effects
* Too high and there will be current going into the opamp

– Capacitors from 10pF to 1µF
* Too low and it will be too hard to make and too sensitive (capacitance exists between rows on

a breadboard!)
* Too high and we’ll have to use electrolytic capacitors, which are polarized, and less accurate

– Inductors from 1µH to 500mH
* Too low and the inductance will be comparable to PCB traces, so the circuit will be extremely

sensitive
* Too high and the inductor will be too hard to make and too big

• Systematic procedure to find a circuit:
1. Group poles and zeros into pairs; each pair uses an inverting amplifier block

– Try to keep the corner frequencies of the poles and zero close
– When poles and zeros are very different, the gain will be extreme and reduces flexibility
– For any remaining lone poles and zeros, add another amplifier block

2. Divide any pure gain among the blocks; add additional pure gain blocks as needed
– We can estimate the amount of gain that a stage provides by dividing the zero by the pole, so

we can get an estimate of how much gain is left
– Remember that real opamps have gain limits

3. Select realistic component values
– Start with capacitors and inductors first because they have a much smaller range of values

• Example: H(s) = (s + 50000)2

(s + 50)(s + 1000000)
– We have to match one 50k zero with the 50 pole and the other 50k zero with the 1M pole
– The first stage has a gain of approximately 1000, the second has a gain of 1/100, which leaves us

with a gain of 10
* When the leftover gain is one or two magnitudes, we are usually able to divide it among all

the stages without having to add an additional amplifier
* Note in practice we need to keep track of the magnitude of our signal in-between stages; if the

signal becomes too small, it can get lost among the noise; if it’s too big, it can get clipped
• We might want to shuffle around the stages; e.g. if we have 2 stages with really big gain

and 2 stages with really small gain, we should alternate the big and small gains so the
signal does not get lost or clipped

– If we have more freedom in grouping poles and zeros, we can try to group them differently in order
to reduce the leftover gain

– Lower frequency poles and zeroes are more easily realized with capacitors; higher frequency poles
and zeros are more easily realized with inductors (this is a direct result of the range of component
values we can use)

– In the real world we might want to calculate the equivalent impedance of each stage of the circuit
to prevent loading effects

– For now we will try using only resistors and capacitors, by RC series
– H1(s) = K1

(s + 50000)
(s + 50) , H2(s) = K2

(s + 50000)
(s + 1000000) so K1K2 = 1 which is our constraint

* We can try to get K1, K2 as close to 1 as possible for both stages
– For circuit 1: we can try to select C1, C2 first

* We want ωc = 50rad/s which has value P = 1
R1C1

* We can try a capacitor value that’s in the middle of the range, e.g. 0.5µF, giving R1 = 43kΩ
– For circuit 2: let’s pick R2 = R1

* We get a capacitor value around 23pF, which works but is quite small
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Important

Lower frequency poles and zeroes are more easily realized with capacitors; higher frequency poles and
zeros are more easily realized with inductors. This is a direct result of the range of component values
we can use. Inductors begin to struggle below 100.

Lecture 10, Oct 11, 2023
Circuit From Transfer Function Example

• H(s) = − s(s + 100)(s + 10000)
(s + 10)(s + 500)(s + 1000)

• Note the features:
– Zero at the origin
– Negative pure gain with |K| = 1, so |K1||K2||K3| = 1, therefore we need an odd number of

inverting op-amp stages
* Note if we only care about matching the magnitude plot, then the negative sign doesn’t matter

for us
• Group the poles and zeros into the 3 stages:

– Note we want to group them so that the distance between the pole and zero is minimized in each
pairing

– H1(s) = K1
s

s + 10, H2(s) = K2
s + 100
s + 500, H3(s) = K3

s + 10000
s + 1000

– Splitting the pure gains among the stages, we want to keep the gain of each stage close to 1
• First stage: H1(s) = K1

s

s + 10
– Note if we try an RC series combination, we will have a zero at 1

R1C1
; to achieve a zero at the

origin, we need an infinite R1, which means the signal cannot get through
* Note we could still use RC parallel

– Try an RL series combination: H(s) = −L2

L1

s + R2
L2

s + R1
L1

* R2

L2
= 0 =⇒ R2 = 0, i.e. R2 will be a short; L2 can be chosen freely, so we can match it with

L1 to achieve a gain of 1
* R1

L1
= 10 but this is unachievable!

• Note if we try our largest possible inductor of 500mH, it would still require a resistor as
small as 5Ω, which is outside our range

• The small resistor means a very low input impedance in this stage, which could lead to
considerable loading effects on whatever input goes into this stage

* Note we could have anticipated this since 10 is a relatively small pole location, so a capacitor
would do better (whereas an inductor would do better for a higher frequency pole)

* To fix this, we could:
• Try a more complex combination of RLC (i.e. mixing up inductors and capacitors in the

feedback/input path); this is the most optimal but complex
• Break this into two stages; this is a valid on a test but is suboptimal
• Change the matching of poles and zeroes (swapping the pole at 10 with a higher frequency

one)
* e.g. we can swap the pole at 10 with a pole at 500

• H(s) = s

s + 500
• R1

L1
= 500 =⇒ L1 = 200mH, R1 = 100Ω, which is marginally acceptable
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• Choose L2 = L1 = 200mH so this stage has a pure gain of -1 (note we can come back and
pick another value later to balance out the gains)

• In reality, we should probably use the pole at 1000 instead so we can get less extreme
values

• Second stage: H2(s) = K2
s + 100
s + 10 (note we swapped in the pole from the previous stage)

– The low frequency pole is difficult to realize with any RL combination, so we will use an RC
combination

– Using RC series: H2(s) = R4

R3

s + 1
R3C3

s + 1
R4C4

* 1
R3C3

= 100 =⇒ C3 = 0.1µF, R3 = 100kΩ

* Try setting R4 = R3 =⇒ 1
R4C4

= 10 =⇒ C4 = 1µF

• Third stage: H3(s) = K3
s + 10000
s + 1000

– In this case both the zero and pole are near the range where capacitors and inductors work well

– Use RC series again: H3(s) = R6

R5

s + 1
R5C5

s + 1
R6C6

* C6 = 1nF, R6 = 100kΩ
* R5 = R6 = 100kΩ =⇒ C5 = 10nF

• Since each stage has a pure gain of 1, the overall gain is 1, which matches what we need; moreover,
since we used an odd number of stages, we also matched the negative sign

• It’s good to draw out the circuit at the very end to check for problematic open circuits and shorts, or
extreme gains or attenuations

Lecture 11, Oct 14, 2023
Introduction to Diodes

• The diode is our first active semiconductor device, i.e. a component with a nonlinear relationship
between V and I

• Diodes have two principal states, forward or reverse bias (i.e. on/off)
– A diode passes currents in forward bias and blocks currents in reverse bias
– A forward bias has higher voltage at the anode than the cathode and current flows in this direction

• Made of semiconducting silicon which are doped to create positive (P-type) or negative (N-type) charge
carriers, forming a PN junction

– Both P-type and N-type materials have low resistance on their own
– In the interface between the two regions, we have a depletion region, where the charge carriers

“cancel”, leaving the high resistivity of the bulk crystalline in a small region
– Applying a reverse bias tries to push electrons from the N-type material into the P-type, expanding

the depletion region and causing no current to pass through due to the high resistance
– Applying a forward bias does the opposite and shrinks the depletion region

* With a smaller voltage the region shrinks but still exists, causing some but not a lot of current
to flow

* After reaching a critical voltage, the depletion region is fully eliminated and now resistance is
low and potentially large currents can pass

• For an ideal diode, we have two regions: in the reverse bias region V < 0, the diode becomes an open
circuit and I = 0; in forward bias I > 0, so V = 0 and we model the diode as a closed circuit

– Using a diode with an op-amp circuit creates an output that is similar to ideal
– This model is suitable for low-fidelity, quick analyses because it can produce ambiguous results
– Note the problem here is that we can’t really define where the diode switches between the two

states, since V = 0 when the diode is a closed circuit
* This means that to use the model, we need to first take a guess at the voltage bias on the
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diode, solve the circuit, and then confirm that our guess was correct
* If we assume reverse bias, and find a positive voltage on the diode, we need to flip it
* If we assume forward bias, and find a negative current across the diode, we need to flip it

Figure 27: Real-world diode characteristic curve.

• In reality the behaviour of the diode looks more like the graph above
• Improved model 1: constant voltage model

– Under some fixed voltage VD0 , we model the diode as an open circuit
– Above this fixed voltage, the diode acts as a closed circuit but with a voltage drop
– We model it as a constant voltage source of voltage VD0 to represent the constant voltage drop

across the diode when it’s conducting
* Note this is not a true voltage source because it cannot deliver current!

– 0.6 to 0.7V is a typical voltage drop for a silicon diode
– As with the ideal model, we can start by assuming reverse bias, then checking if the diode has a

voltage greater than VD0 ; if it is, then we assume forward bias and solve the circuit again
– With this model, we can also calculate the power dissipation as P = IVD0

• Improved model 2: piecewise-linear model
– Use an added series resistance to model the change in V vs. I in forward bias
– In forward bias, we replace the diode with both a voltage drop of VD0 and a series resistance rD

* The condition for forward bias is now V > VD0

* With this model, we no longer have an ambiguity in the condition check since the same variable
is used for both forward and reverse checks

– This has better fidelity, but rD needs to be fitted to real life conditions
* The value of rD can change for low vs. high currents, so if we fit it in one range it will be

increasingly less accurate in the other
– This model is good for a quick analysis of the current and power dissipation through the diode

• Improved model 3: exponential model
– This model is more accurate but not suitable for hand calculation
– Forward bias is modelled as ID = IS

(
e

VD
nVT − 1

)
– Reverse bias is modelled as a constant small reverse current ID = −IS , so that we avoid ambiguity

when checking later
– The parameters come from the underlying physics:

* IS : saturation current, on the order of 1 × 10−12 A to 1 × 10−15 A; this is the current that
flows through the bulk crystalline structure (diffusion of minority carriers)

* VT : thermal voltage, usually 25mV at room temperature; this models the thermal response of
the diode
• Sometimes diodes can heat up, which causes them to pass more current, which in turn

causes them heat up even more in a positive feedback loop
* n: ideality factor, typically 1-2; this accounts for inaccuracies in our model

– This model has near-perfect fidelity, but is not suitable for hand calculation
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– Procedure:
1. Assume some initial guess for ID using the constant voltage model
2. Calculate the diode voltage from ID by reversing the model
3. Treat the diode as a constant voltage drop we just calculated, and find the current through

the diode by solving the rest of the circuit
4. Repeat the previous steps until the change to the diode current between iterations is small,

which indicates that we’ve reached a sufficient degree of precision
– We could also start with a voltage guess and iterate based on that, but since the model is much

less sensitive to current, having a bad current guess is much better than having a bad voltage guess
• If a sufficiently large reverse voltage is applied, the diode can break down

– The large electric field creates additional temporary charge carriers, causing an avalanche effect;
substantial reverse current can flow in breakdown

– This effect is not permanent and can be reversed if the voltage/current drops
– Most of the time this is undesirable; it’s hard to take advantage of because the breakdown voltage

is hard to predict
• The transition between forward and reverse modes takes a nonzero amount of time, during which

current can flow in the wrong direction
– The reverse recovery time Trr is the time required for the transition
– During Trr, even though the voltage should put the diode into reverse bias, it will keep conducting
– This can lead to destructing of the diode
– Some diodes are faster; a typical diode recovers in about 1ms, with special diodes (e.g. Schottky)

bringing this down to 10ns or less
– However there is a tradeoff between the reverse recovery time and other design parameters

Lecture 12, Oct 18, 2023
Regulator Circuits

Figure 28: Voltage regulator input vs. output.

• The goal of a regulator is to produce a constant DC output voltage (generally from a higher input
voltage) which is constant and steady under load variation

• A regulator is often attached to the output of an AC rectification circuit, which is noisy and contains
ripples

• We want the output of our regulator to look like the blue plot above, even if the input voltage varies or
if the output load draws varying amounts of current

• Two properties of regulators are of interest:
– Line regulation: holding output constant while input voltage changes

* This is usually analyzed under the worst-case load current scenario
* For simple regulators, the highest load current is typically the worst-case scenario; for more

complex regulators this can be the lowest load current
* This is generally quantified as the difference between VOUT at maximum VIN and VOUT at

minimum VIN (both at the worst load current), normalized by the design VOUT (nominal
value)
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• Note sometimes the VOUT at max or min input voltage are used as normalization for more
complex circuits

* Line regulation is often expressed as a percentage, which would be the percent change in
VOUT for every 1% change in VIN

• Single digit values are good, double digit values are generally poor
– Load regulation: holding output constant while load current changes

* For simple regulators, the lowest input voltage is typically the worst-case scenario
* This is generally quantified as the difference between VOUT at minimum load and VOUT at

maximum load (both at the worst input voltage), normalized at the VOUT at maximum load
• Note we are doing min minus max, because generally with a higher load we expect the

output voltage to go down
• Some manufacturers will normalized by VOUT at minimum load or nominal VOUT

– Load and line regulation are signed quantities, but they are typically positive unless there is
feedback in the circuit

• For most simple (no active feedback) regulator circuits, the ends of the input/current draw ranges are
usually where the regulator behaves the poorest

• Most regulator circuits take advantage of the fact that the voltage drop across a diode in forward bias
is nearly constant

– Typically if a regulator circuit is working, diodes will be in forward bias mode
• Let’s try to design a regulator with the following requirements:

– Input voltage varies from 10-15V
– Load current varies from 0-1A
– Desired output is 9V

Figure 29: Series diode regulator.

• Example: series diode regulator
– RLOAD is a placeholder load which can draw varying amounts of current as specified above
– We will be using the piecewise-linear model with VD0 = 0.5 V and rD = 0.1 Ω
– On a high level we expect the output to be a constant voltage offset from the input due to the

series diodes
– This regulator has poor line regulation, but good load regulation
– To find line regulation, we solve the circuit for VIN = 10 V to 15 V; in both cases we solve with

ILOAD = 1 A since it is our worst-case scenario
* Assuming forward bias on all diodes, we have 3 resistors rD in series and 3 voltage sources

VD0 in series
* Note generally when diodes are in series with no connections in-between, they will always

have the same state
* At VIN = 10 V, ILOAD = 1 A each rD has a voltage drop of 0.1 V and each VD0 has a voltage

drop of 0.5 V, resulting in 8.2 V
* At VIN = 15 V, the analysis is similar and we get 13.2 V
* The line regulation is then 13.2 − 8.2

9 = 55.6%, which is very bad
* Note for this circuit, it doesn’t matter what load current we chose
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– To find load regulation, we solve the circuit for ILOAD = 0 A to ILOAD = 1 A
* First assume VIN = 10 V, then at ILOAD = 0 A we have 8.5 V and at ILOAD = 1 A we have

8.2 V
• The load regulation is 8.5 − 8.2

8.2 = 3.7% which is pretty good
* If we solve at VIN = 15 V, we get 13.5 V at no load and 13.2 V at maximum load

• The load regulation is 13.5 − 13.2
13.2 = 2.3%, which is better than the minimum input

voltage case
• This confirms that the minimum input voltage is the worst case

Lecture 13, Oct 20, 2023
Diode Shunt Regulator

Figure 30: Diode shunt regulator circuit.

• The idea is that we’re shunting the current that the load is not using through the diodes
• We expect this to have good line regulation since here Vout is essentially equal to the constant voltage

drop across all the diodes
– We can also design it for good load regulation

• Our operating condition are the same as the previous example:
– Input voltage from 10-15V
– Load current from 0-1A
– Desired output is 9V

• We will modify the circuit to have 15 diodes in series instead of 3, all with a piecewise linear model; we
will use a shut resistance of RSHUNT = 3.5 Ω

• Since the diodes are all in series, they will share the same state, which we assume to be forward bias
– Each diode is replaced with a constant voltage drop of 0.5 V and a series resistance of 0.1 Ω
– This leads to a total voltage drop of 7.5 V and resistance of 1.5 Ω

• Line regulation: test two cases, VIN = 10 V and VIN = 15 V, under a load current of ILOAD = 0 A
– In this case the worst-case scenario is reached when the diodes are on the edge of being in reverse

bias; this generally happens when we don’t pull enough current or pull too much, but it is the
former case that is more common

– Node equation at output: VOUT − VIN

RSHUNT
+ ILOAD + VOUT − 7.5

1.5 = 0
– At VIN = 10 V, VOUT = 8.25 V
– At VIN = 15 V, VOUT = 9.75 V
– The line regulation is 9.75 − 8.25

9 = 16.7%, which is okay (but not very good)
* The problem is that the design point for the circuit is different – the value of RSHUNT is

selected so that we can deliver larger currents; if we had chosen a larger resistance and limited
our current range, we will see much better performance

• Load regulation: test two cases, ILOAD = 0 A and ILOAD = 1 A, under an input voltage of VIN = 10 V
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– For pretty much all regulators without feedback, the worst case occurs with minimum input voltage;
at minimum input voltage we’re the most susceptible to losing forward bias on the diodes

* This is referred to as the “dropout voltage”, which is the minimum difference between VOUT

and VIN

– At ILOAD = 0 A, VOUT = 8.25 V
– At ILOAD = 1 A, VOUT = 6.5 V

* Note if we had assumed that the diodes are all in forward bias, we would have found
VOUT = 7.25 V; this would mean less than 0.5 V per diode, so we lose forward bias

* In reverse bias we simply have VOUT = VIN − RSHUNT ILOAD = 6.5 V
– The load regulation is 8.25 − 6.5

6.5 = 26.9% which is quite bad
• This is a pretty good voltage regulator if we make sure that it does not drop out, so for higher current

outputs we need to make sure that the input voltage stays high
• Note that in practice the power consumption of this circuit is quite high

Zener Diodes

Figure 31: Model of a Zener diode.

• A zener diode is a diode engineered to undergo reverse breakdown non-destructively at a specific voltage
– In forward bias it behaves similar to a regular diode, but in reverse we’re able to get a very specific

breakdown voltage that can be quite large
– Typically zener diodes are used in reverse bias in its zener region

• Most often zener diodes are analyzed using a piecewise linear model; we will use a constant voltage
model

– We can replace a zener diode with just a constant voltage source, provided the reverse voltage is
high enough

– Note that because most diodes have a low voltage dissipation, for a larger zener voltage we will
have very low current ratings

– We neglect the linear resistance since most of the time we will have low current

• Example: for the zener shunting regulator above, select the zener voltage VZ and RSHUNT and determine
the current range it operates in; assume VOUT = 10 V and VIN is in the range of 12-18V, and the zener
diode can dissipate 0.5W of power

– If we use a constant voltage model we immediately see that VOUT = VZ , so we can select the zener
voltage as 10V immediately

– The worst-case scenario for the input voltage is VIN = 18 V, which will give the highest current
draw

* Higher VIN pushes more current through the shunt, which in the worst case will all go through
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Figure 32: Example problem.

the diode
* Under this scenario and assuming ILOAD = 0 A the diode dissipates a power of

VOUT
18 − VOUT

RSHUNT
= 0.5 W, which we can solve to get RSHUNT = 160 Ω

* Note we always want to make RSHUNT smaller because this limits the maximum amount of
current we can draw

– To see how much current we can draw, we need to consider the worst case VIN

* The critical point is when VIN − VOUT

RSHUNT
≤ VZ which is when the diode drops out

* We also need ID ≥ 0 and ID = VIN − VZ

RSHUNT
− ILOAD; so when VIN = 12 V and ID = 0 we get a

current limit of 12.5 mA (which is higher for a higher VIN )
• Zener voltage references are the standard if we want to produce a precise voltage at a low current

Rectifier Circuits

Figure 33: Example half-wave rectifier.

Figure 34: Half-way rectifier with capacitor.

• A rectifier circuit converts an input AC voltage into an output DC voltage
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• In the example half-wave rectifier above, the diode will allow current to pass through whenever the AC
voltage is positive, and block it when the voltage is negative

– However this is produces an output that is far from DC since whenever the AC voltage goes
negative, our DC voltage goes to zero

• To counteract this we use components that can store energy – capacitors and inductors; this will give
us a wavelike output, which we can describe as DC plus some ripple

– The amount of ripple is proportional to the current drawn and inversely proportional to the
capacitance

– Note that this puts a large reverse voltage on the diode, so we need to select the diode accordingly
– If we attach a capacitor however, we get a large current spike when both the load and capacitor

are getting current; therefore we need to make sure that the peak current rating for the diode is
high enough

* This also increases the reverse voltage; in the worst case, we can see up to twice the original
value

Lecture 14, Oct 25, 2023
Regulator Design

• Diode selection is made more complex in a rectifier with a capacitor:
– Input current only flows for a short period of time each cycle, which charges the capacitor and

supplies the load – this leads to a significant current spike, so we need to ensure the peak repetitive
surge current of the diode is high enough

– Peak reverse voltage across the diode also increases significantly, since the output voltage stays
high while the input voltage drops negative – the voltage drop is now close to twice the peak
voltage minus the diode drop

* Smaller ripple makes the peak reverse voltage closer to this
* PIV = 2Vp − VD0

• The high peak current draw is a problem for power distribution grids, so we usually use some form of
power factor correction to account for this

– We can put an inductor in series with the input current; since the inductor resists change in
current, this smoothes out the peaks (in theory, while in practice this doesn’t work too well)

Figure 35: Plot of the output from a rectifier.
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• The ripple voltage VRIP P LE is typically defined as the peak-to-peak voltage difference of the output
(distance between the two blue lines)

• For a capacitor, VRIP P LE = ILOAD

fC
– Here we assume that the load current is roughly constant, which makes a straight-line approximation

of the capacitor discharge valid
– A larger capacitor and higher frequency (so peaks are closer) reduce the amount of ripple

• Note that in rectifier circuits, we typically use a transformer, which is a pair of coupled inductors
wrapped around the same core; this steps down the line voltage and adds isolation between our circuit
and the input

– If the input (primary) winding is NP and the output (secondary) winding is NS , then the output
voltage is VS = VP

NS

NP
• Sometimes we will use the RMS voltage of the input AC signal, which can be converted into peak

voltage by multiplying by
√

2

Figure 36: Example problem.

• Example: design the above half-wave rectifier by selecting C1 and the RMS secondary voltage required
for T1, and specify the minimum PIV for D1; the power supply will be regulated by a circuit that
outputs 5 V DC and requires an input of at least 7 V; we want 20 mV peak-to-peak ripple, given a
maximum load current of 1 A and f = 60 Hz; assume VD0 = 1.0 V, ID = 1 A

– Note that typically instead of targeting a small ripple input to the regulator, we typically leave
the ripple rejection to the regulator

– We can use the formula to solve for C1 from the amount of ripple; we get C ≥ 0.833 F (which is
quite unrealistic)

– Adding the ripple to the minimum output voltage and adding the capacitor voltage drop gets us a
secondary voltage of about 8 V (where we have ignored the ripple voltage since it is comparatively
small), or 5.66 V RMS

– Therefore the PIV can be calculated by taking twice the peak secondary voltage and subtracting
the diode drop, which is 15 V

Full-Wave Rectifiers
• By using a full-wave rectifier, we can effectively double the number of charging cycles (the input

frequency), allowing us to select a smaller capacitor and get less ripple
• One way of implementing this is using a center-tapped winding on the transformer; this behaves like

two separate secondary windings connected in series, so if we connect the center to ground, we get
essentially a positive and a negative version of the AC signal

• These two signals are then fed through diodes and into the same capacitor circuit to rectify
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Figure 37: Full-wave rectifier circuit.

Lecture 15, Oct 27, 2023
Full-Wave Rectifier Example

Figure 38: Example problem.

• Example: design the circuit above by selecting C1 and the RMS center-tapped secondary voltage for
the transformer T1 and determining the PIV required for the diodes; the power supply is regulated
by a regulator that outputs 10V , requiring a voltage of at least 12 V and has 40 dB of ripple rejection;
we want the overall output of the power supply to have 20 mV ripple given a max load of 1 A and
f = 60 Hz; assume VD0 = 1.0 V at ID = 1 A

– A ripple rejection means that the input ripple to the regulator will be reduced by a factor of 40 dB,
i.e. divided by 100

– This means we can tolerate up to 2 V p-p of ripple from the rectifier
– We need the peak voltage minus the diode drop minus the ripple to stay above 12 V

*
VSECp

2 = 12 + 2 + 1 = 15 V
* Multiply by 2 to get the peak-to-peak voltage of the secondary, and convert to RMS
* VSECp−p

= 21.2 V (RMS, CT)

– VRp−p
= 2 = ILOAD

2fC
=⇒ C = 4170 µF

* Note that we’ll get 2 peaks for every full cycle of the AC, so in effect by using a full-wave
rectifier we have doubled the frequency

* Sometimes we need to pick the capacitor’s working voltage, which we can determine by
checking the maximum voltage, in this case 14 V (12 + 2)

* This will be an electrolytic capacitor
– Note that our peak inverse voltage doesn’t change compared to the half wave rectifier case; it’s

still PIV = 2VINp
− VD0 = 29 V

* The peak input voltage is half of the secondary peak to peak voltage
• Typically a more efficient rectifier will increase the frequency of the input AC to achieve smaller

capacitance requirements
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Figure 39: A MOSFET.

Transistors and MOSFETs
• MOSFET stands for Metal Oxide Semiconductor Field Effect Transistor
• Transistors are active, three-terminal devices that provide a path for (potentially large) currents to

flow, along with an input control
• For a MOSFET, the control signal is called the gate, while the input and output for the current are the

drain and *source
– VGS is defined as the relative voltage between gate and source
– Applying some VGS will cause current IDS between drain and source; just like a diode, under

normal circumstances drain to source is the only direction that current can flow
* This is a transconductance amplifier, since a (possibly small) voltage input controls (a possibly

large) a current output
• In general we have 3 different states for the MOSFET where two are conducting states; one of these

states is associated with switching applications (on/off), another one is associated with amplification

Figure 40: Structure of a MOSFET.

• A MOSFET has the following structure:
– The bulk material is made of p-type semiconductor
– Two cavities are made where n-type semiconductor is filled in; one is connected to the source, one

is the drain
– A gate oxide layer acts as insulation between the metal gate and the body
– Where the two meet, we have a depletion zone where current cannot conduct – this gives us a

default state of high resistance
– Right now we have 4 terminals; to get this to a regular transistor we short the body and source
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Figure 41: Physics of the MOSFET.

• The MOSFET is made active by applying a potential to the gate
– If the gate has a potential relative to the body, the charge carriers in the p-type body is separated

and drawn to the surface
– This knocks off a little bit of the depletion zone, so we get a continuous path (channel) between

drain and source
– This can be accomplished with depletion-mode or enhancement-mode

• Like a diode, in order to form the channel, we need a minimum threshold voltage VT which VGS must
reach, below which the MOSFET remains in cut-off

– Usually in the order of a few volts
– Note this doesn’t yet tell us about how much current can flow or how much we can control the

current

Figure 42: MOSFET symbols.

• Note that there are many different MOSFET symbols, all made to reflect the actual construction of the
MOSFET; however they don’t really change the math much, so we will use the simplified symbol (first
image in this section)

– The separation between the gate and the source/drain implies that at least at DC, current cannot
flow into the gate
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• Once the channel is created, current can flow with varying resistance from drain to source; there are 2
modes:

– Triode mode: unrestricted channel, small drain to source voltage/resistance
* This is the “switching” mode
* Low power is dissipated because we have low resistance, so the switching is efficient
* We can use this as a switch to control a larger current with a small voltage

• However we don’t get any control over how much current passes through even as we vary
VGS

* This requires VGS > VT and V from drain to source is small
* Typically we set up VGS ≫ VT because the larger our gate voltage, the more current we can

pass through with the MOSFET still remaining in triode mode
– Saturation mode: restricted channel with pinch-off

* This requires VGS > VT but VGS ≈ VT

* Now we have VDS being potentially large
* The degree of pinch-off varies proportionally with VGS , so the output current flow is proportional

to the input voltage
* In this mode, we have a transconductance amplifier

Figure 43: MOSFET in saturation mode.

• When VGS < VT , the MOSFET is always in cut-off mode with no current flowing anywhere, so we
model the MOSFET as an open circuit

• When VGS ≥ VT , the MOSFET is in one of two conducting modes
– The triode mode is modelled as a fixed, low-value resistance rDSON

* The current is not really dependent on VGS

– The saturation mode is modelled as a current source that is a direct function of input voltage,
IDS = f(VGS)

* This much current flows pretty much regardless of what is attached to the terminals
– Note that the exact boundary between the two modes is dependent on the applied voltage

* VDS = VGS − VT is the exact boundary between the two modes
– We can also have devices on the boundary between two modes

* On the boundary, both sets of mode equations apply

• The exact formula for triode mode is IDS = k′
nW

L

(
(VGS − VT )VDS − 1

2V 2
DS

)
– This requires VGS ≥ VT and VDS ≤ VGS − VT

– But typically VDS is very small so the second term can be ignored, giving us a linear approximation
* Note that this approximation relies on VGS ≫ VT , so we typically design to this

– Therefore we have IDS ≈ k′
nW

L
(VGS − VT )VDS

* This gives us an equivalent resistance of 1
k′

nW
L (VGS − VT )

= rDSON

* Note that this does depend on VGS − VT but the dependence is relatively small
– We don’t typically calculate this ourselves; rather the datasheet gives this value, usually at a fixed

large value of VGS
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Figure 44: Plot of MOSFET current against drain-to-source voltage.

– But note that this means we’re fitting it to a specific VGS (typically the more vertical bits to the
left), so if we’re operating close to the boundary we will get wrong results

* k′
nW

L
also depends on the gate voltage so we can’t simply use the formula

• In saturation mode, the output current has effectively no dependence on VDS , so IDS is a function of
VGS only; however this is a nonlinear effect; IDS increases faster the larger VGS gets

– This gives us model of ID = 1
2k′

n

W

L
(VGS − VT )2

– The model parameters may be known from material properties but are usually fitted to a datasheet
* These numbers are different from the ones in triode mode!

– Nonlinear amplification is bad because it introduces distortion to our signal (BJTs do much better
in this aspect)

– To fix the nonlinearity, we will limit the range of VGS to a small delta around the central value
(operating point); now we can linearly approximate the result

* This is called a small signal model

Figure 45: NMOS and PMOS symbol differences.

• Note that so far we’ve been talking about an N-type MOSFET (NMOS), since it has N-type doping for
the source and drain; if we flipped the regions, we get a P-type MOSFET (PMOS)

– The main difference is that the direction of current flips; in a PMOS the current flows from source
to drain

– We also reverse the inequalities in all of our condition checks, but otherwise keep the same models
– A different value is also used for k′

p
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– ID is taken as positive but positive ID is ISD (source-to-drain) instead of IDS

– For a PMOS VGS is typically negative in triode/saturation, and VT is also negative

Lecture 16, Nov 1, 2023
MOSFET Real-World Issues

Figure 46: Model of parasitic capacitance in a MOSFET.

• In real life the construction of the MOSFET introduces a parasitic capacitance from gate to source
(there are also gate-to-drain, drain-to-source parasitic capacitances but these are small)

– Typically CGS ∼ 5 pF − 50 nF
– This introduces a time limit for switching since we need to charge the capacitor
– This can also draw large transient currents when VGS changes rapidly, so we will need a driver IC

or series gate resistors to mitigate this issue

Figure 47: MOSFET body diode.

Figure 48: Fixing the MOSFET body diode.

• The construction creates 2 unintended PN junctions between the body and source/drain, which acts as
a diode

– Since we short body to source, one of these will be shorted out; however, the body-drain diode
(known as the body diode) will now exist between the source and drain
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– If the drain-to-source voltage is too large, this diode will enter reverse breakdown and cause issues;
this limits the max allowable VDS in all modes

– This diode can also make the MOSFET conduct even when it is in cut-off; this happens when
ID < 0

– Sometimes we want a diode in this location (e.g. motor driver) but this is a really bad diode
– Generally we place external diodes with better specifications to fix the problem

Figure 49: MOSFET ESD protection.

• The thin oxide layer under the gate is very easy to damage; typically VGS is limited to ±10 V or ±20 V
– This means static discharge can easily damage the oxide layer
– Most modern ICs and devices with MOSFETs now have additional ESD protection for this reason

Design Examples

Figure 50: Example circuit.

39



• Example: design the circuit above for a drain current of 1 mA and a drain voltage of 0 V; the transistor
has VT = 1 V, k′

n = 60 µA/V2, L = 3 µm, W = 100 µm
– We assume that gate current is 0 at DC, so current into the drain must be the same as current out

of the source
* Therefore generally we use drain current, source current, and drain-to-source current inter-

changeably
– Note we always use uppercase subscripts for DC and lowercase subscripts for small signals
– We usually start at the drain-to-source path
– Since the voltage at VD is 0, we know the voltage and current across the resistor RD immediately

* RD = VDD − VD

RD
= 2.5 kΩ

– Now we need to relate VS to VD by determining the mode of operation for the MOSFET
* We will assume one of the conduction modes (since we have a nonzero drain current, it cannot

be in cut-off mode)
* Recall that for saturation, VDS > VGS − VT =⇒ VD − VS ≥ VG − VS − VT =⇒ VD ≥

VG − VT =⇒ VD − VG > VT =⇒ VGD < VT

• This is satisfied in our example
* Note that in general, we won’t always be able to determine the MOSFET’s mode of operation

directly like this
* However in general in saturation mode, we typically expect drain to source currents on the

order of milliamps or drain/source resistances on the order of kilohms
– In saturation current is a direct function of VGS so we can find VGS using the MOSFET parameters

and find VS given VG

* This will yield us two values 0 V or 2 V, but we can eliminate one since we require VGS > VT

* At this point we can check our assumption of saturation mode
– This gives us VS = VG − VGS = −2 V
– Now we can solve for RS = VS − VSS

ID
= 500 Ω

* Typically in many designs the source resistance is the smaller of the two

• Example: find the drain and source voltage of the MOSFET above, and select a resistor to replace the
current source with, without changing the source or drain current

– We expect the MOSFET to be in saturation mode
– We have VG = 0 V, ID = 2 mA
– The drain voltage can be calculated by as VD = VDD − RDID = 2 V

* Note when we solve the equation we will get 2 possible values, but one of them will give us
cutoff instead of saturation

– VGD = −2 V < VT so we are indeed in saturation mode
– Now use ID = 1

2kn
W

L
(VGS − VT )2, with ID = 2 mA to solve for VGS = 4 V

* Again we will get 2 values, but one of them gives us cutoff
– So VS = VG − VGS = 4 V
– We can now solve for an equivalent resistance value that can replace the current source: IS =

ID = 2 mA = VS − VSS

RS
to get RS = 3 kΩ

Lecture 17, Nov 15, 2023
More Design Examples

• Example: feedback biasing: for the MOSFET circuit above, find the drain and source voltage and select
a resistor to replace the current source

– VS = 0
– ID = IS = 2 mA still because we assume a gate current of 0 at DC
– VGD = 0 forces us to be in saturation, since VGD < VT
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Figure 51: Example circuit.

Figure 52: Design example 3.
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– ID = 1
2k′

n

W

L
(VGS − VT )2, so we can solve for VGS and pick the one that gives us saturation:

VGS = 3.414 V
– VG = VS + VGS = VD to solve for VGS

– With VDD and VD and the current going through, we can find 1 mA = VDD − VD

RD
=⇒ RD =

6.59 kΩ
– By itself, this circuit doesn’t do much, but we can use it to provide a stable reference current, as a

building block in a current source circuit

PMOS Circuits

Figure 53: PMOS transistor equations.

• For a PMOS, we have to flip the equations as above
• Positive current is defined as source to drain
• Note that VT is negative for a PMOS, but otherwise has the same magnitude

Figure 54: PMOS design example.

• Given VT = −2 V, find VD, VS , determine an equivalent source resistor; assume k′
p = 1 mA/V2

– We know IS = ID = 2 mA, which already gives us VD = VSS + RDID = −5 V
* Note the “negative supply” is still called VSS even though it’s now connected to the drain

– VGD = VG − VD = 5 V > −2 V = VT , so we have saturation mode
– ID = 1

2k′
p

W

L
(VGS − VT )2 to get VGS = −4 V as the voltage that avoids cutoff

– VS = VG − VS = 4 V
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– Sanity check: we should normally have VS > VD (typically the terminals will be laid out such that
the higher voltages are higher on the page)

* Due to saturation mode, we expect VS to be quite a bit larger, which is the case
– This gives RS = 3 kΩ

Lecture 18, Nov 17, 2023
Biasing MOSFET Amplifiers

• To design an amplifier, we have to go through 2 stages:
– First we set up the circuit to operate at a specific DC configuration

* This determines the biasing of the amplifier
* This gives us some parameters that determine the amplifier operation – input/output resistance,

voltage gain, and indirectly, the voltage limits
– We will then use capacitors to inject an AC signal and extract the resulting signal

• Note capital letters are generally pure DC, while lowercase letters are AC
• For a single MOSFET there are generally 3 possible amplifier configurations: common source, common

drain, and common gate
– The “common” terminal is the terminal that is not coupled to an input/output

• There are several ways to do biasing:
– Fixed VGS biasing: fixing VGS , where source and gate are connected to some constant voltage

* This is the simplest, but least useful because it is very sensitive to VGS and has a small
operating range

* The circuit might have a lot of gain, but it will be very sensitive to tolerances
* We are essentially overconstraining the problem

– Fixed VG biasing: fixing VG and adding a source resistor
* An increase in current leads to an increased voltage drop across the resistor, which raises VS

* With a fixed VG, this decreases VGS and decreases the current – this is negative feedback
* This gives us a much wider range of operation – VIN can be a much larger range and still

have good gain
* Introducing the source resistor reduces the output range, which can be fixed using a capacitor,

either replacing or in parallel with the source resistor (bypass capacitor)
– Feedback biasing: connect the drain and gate together, with a gate resistor between them

* Since no current flows into the gate at DC, the resistor has no impact on the gate resistance,
so we just have VD = VG

* VDG = 0 which makes the MOSFET always in saturation (with some limitations)
– Constant current source (CCS) biasing: connecting a constant current source at the source to set

the DC drain/source current
* We can add a bypass capacitor from source to ground, so for AC the capacitor grounds the

source
* We can implement the current source using a current mirror

• The operating range is restricted due to the modes of the transistors
– Usually at one end we will get triode mode on some resistors and the other end will give us cutoff

mode
– In both cases we would usually get clipping

• The current mirror shown above behaves equivalently to a constant current source
– Note the current ID1 is mirrored in ID2

– This only works if the MOSFETs stays in saturation; Q1 is feedback biased, so it will always be in
saturation, but note Q2 does not have this guarantee

* Q1 in saturation creates some VGS , which will be copied exactly by Q2
* Assuming that Q2 has the same parameters, we copy the current in Q1 exactly to Q2

• Example: design the above circuit so that all transistors operate in saturation, the current source
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Figure 55: Current mirror circuit.

Figure 56: Example circuit using CCS biasing.

44



provides 2 mA, and the drain of Q3 has a quiescent (i.e. bias point) of VCC

2 ; assume VDD = VSS =
15 V, k′

n = 4 mA/V2, W = 250 µm, L = 5 µm, VT = 4 V
– We know that Q3, Q2 must have ID = IS = 2 mA, and due to the current mirror we want Q1 to

have this as well
– At DC we want the drain voltage to be 7.5 V
– Starting with the current mirror:

* Q1 is always in saturation since VDG = 0
* ID1 = 1

2k′
n

W

L
(VGS1 − VT )2 = 2 mA

* We can now solve for VGS1 = 4.14 V, discarding the other result of 3.86 V since that gives us
cutoff

* Note that the current in this branch cannot go through any of the gates, so ID1 is also the
current through R1

* Therefore VD1 = VG1 = VGS1 − VSS = −10.86 V and use this to find R1 = 12.93 kΩ
– Note VGS1 = VGS2 , so if Q2 is in saturation, we will also get 2 mA on the right

* We will solve the circuit with this assumption and then check the mode of Q2 later
– Given that we know VD3 and ID3 = ID2 we can solve for R2 = 3.75 kΩ
– We’ve already found all component values, but we need to go back and check our assumptions

* For Q3, VDS3 = VD3 − VS3 ; we need to check if this is greater than VGS3 − VT = VGS2 − VT

(since all transistors are the same and must give ID = 2 mA)
* Since VGS3 = VGS2 = 4.14 V, this gives us VS3 = VG3 − VGS3 = 0.86 V – use this to check that

the inequality is satisfied and Q3 is in saturation
* We also have VD2 = VS3 = 0.86 V, so VDS2 = 15.86 V > VGS2 − VT = 0.14 V, so Q2 is also in

saturation
– Note the saturation mode equation is an approximation since there are other real world effects; in

the real world voltages will be slightly different

Small Signal Amplifiers
• The general idea is that we will couple in an AC signal to our MOSFET circuit using capacitors, which

will be amplified
• The DC operating point (biasing) of the amplifier restricts its operating range and also how it behaves

as an amplifier – voltage gain, effective resistance, effective source/output resistance
• We will often bias the amplifier to operate “halfway” between the boundaries of cut-off and triode mode

Figure 57: Example.
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• Example: design the circuit above so that the MOSFET operates halfway between cut-off and triode
mode, with ID = 2 mA, VT = 0.8 V, k′

n = 50 µA/V2, W = 200 µm, L = 4 µm
– The output will idle at some value and any time-changing signal will vary the output level
– This output level is a function of ID

– RD will give us the drain current and RS will shift the DC centre value
– At the boundary between cutoff and saturation, both equation will apply; we need to get VDS

from these equations
– If ID = 0, then VD = VDD since no current flows through the resistor, and VS = −VSS ; this can

give us a value for VDS

– At the boundary of triode, VDS = VGS − VT

– VDS = 0.6VGS + 14.6
– We can get a final condition by using the saturation mode equations
– This gives us VGS and VDS and lets us find RS and VD

– Doing this however gets us very skewed limits – we’re very close to cutoff‘

Lecture 19, Nov 22, 2023
Small Signal Models

• To model our amplifiers, we need 3 quantities: the voltage gain AV , the input resistance/impedance
RIN and the output resistance/impedance ROUT ; to get these quantities, we need a model of small
signals

– We will mix DC and AC signals, assuming that the AC component is small
• Notation: All DC signals are represented with capital letter subscripts

– VIN + vin → VOUT + vout = VOUT + AV vin

– VOUT is a function of VIN only and vout is a function of vin

– Note that often we will drop the DC parts, so that we have vin → vout = AV vin, where AV is the
voltage gain

• The amplifier quantities AV , RIN , ROUT are all functions of the DC bias point, but we assume that the
DC bias point is fixed

– This means we can solve for the 3 quantities first, and use any leftover adjustments to account for
other quantities; note that often these quantities will already be overconstrained

• We can thus eliminate any DC components in the circuit and consider the time-varying components
only; e.g. we can eliminate DC voltage sources (including at VDD and VSS)

• However the MOSFET model is nonlinear, so we must Taylor expand it and use an approximation
– iD = 1

2k′
n

W

L
((VGS + vgs) − VT )2

– Expanding this, we will get a DC component plus k′
n

W

L
(VGS − VT )vgs

– gm = k′
n

W

L
(VGS − VT ) is the MOSFET transconductance parameter, so id = gmvgs

– Generally we will have some target, which we can use to solve for gm and other parameters, and
finally find the DC bias point using these parameters; we can also make other adjustments if we
have more variables to work with

• Now we can replace the MOSFET with an equivalent default model, once we have the transconductance
parameter

– The model on the left accounts for the small signal itself and is the simplest possible model
– The model on the right also accounts for channel-length modulation

* This is a constant small signal current that always flows regardless of the applied voltage
* This portion of the current isn’t proportional to vgs; this comes from the inaccuracies in our

model
– The resistance can be found as ro = |VA|

ID
; for drain currents in the milliamp range, this is often in

the range of 10 to 100 kΩ
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Figure 58: Amplifier circuit.

Figure 59: NMOS default model.
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* ID is the DC drain current; VA is a process parameter and is usually given (related to the
MOSFET material properties)

– The model on the right is more accurate, however we will often avoid using it, because usually it
makes the analysis much more complicated without having too much effect

Figure 60: T-model of the MOSFET.

• Using circuit transformations, we can get several equivalent models; the one shown above is the T-model
– This model is often much easier for calculating input and output resistances, if we are looking into

the source or drain
– Note that even though there appears to be a path from gate to ground, there would still be no

gate current, due to the current from the current source exactly equalling the current through the
resistor

– The diagram on the right also incorporates channel-length modulation, which usually makes the
analysis much more complicated

• The following procedure can be used to remove the DC bias point and its associated effects, leaving us
with only the small signal part

1. Solve the circuit to determine the DC bias point/quiescent (Q) point and calculate gm, ro for all
MOSFETS

– This is often given in most problems
2. Replace the MOSFET with one of the previous models
3. Replace all capacitors with a short, open, or constant impedance

– This is because we usually assume an input of fixed frequency, so capacitors have constant
impedances

– Based on the relative size of the capacitor, we can decide which one to replace by; if the
capacitor is sufficiently large, then it looks like a short circuit in AC; otherwise it may look
like an open circuit or constant impedance

* Usually coupling and bypass capacitors will be replaced by a short
* There are some capacitances we don’t have control of, e.g. the MOSFET parasitic capaci-

tance; in this case we use an open circuit or constant impedance
– In an exam scenario, it will normally be a short circuit

4. Replace all DC constant voltage sources with short circuits (so that it effectively has a DC voltage
of 0)

– This means wherever we have a DC supply voltage, we will get a ground connection – this
includes VSS and VDD

– The only source of excitation is usually the MOSFET model itself
5. Replace all DC constant current sources with open circuits (so that it effectively has a DC current

of 0)
6. Solve the resultant circuit to determine the gain, resistances, etc
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Lecture 20, Nov 24, 2023
Example: Common Source Amplifier

Figure 61: Example: Common source amplifier.

Figure 62: Transformed circuit of the example.

• Example: find the open circuit voltage gain, input resistance, and output resistance of the amplifier
above

– First transform the circuit:
* Replace coupling capacitors$ CC1, CC2 and bypass capacitor CS with short circuits
* Everything in the first circle is the driving input source; this is what gives us the time-varying

signal, which gets driven through some finite output impedance
• This is not a part of our amplifier, so quantities here should not appear in our solution
• We define vin at the node right after this, between Rsig and CC1

* The circle at the top right is the load, so like the input source, we also don’t consider it as a
part of our amplifier
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* Short circuit the voltage source at VDD and replace the current source with an open circuit
• Notice that if we didn’t have the bypass capacitor, the circuit would not work, because

after removing the current source the source would be floating
* Replace the MOSFET with the default model

– We will start by calculating the open-circuit voltage gain; for this we assume no loading effects
whatsoever

* Later on we will account for loading effects externally, so for now we won’t consider it
* Start by writing a node equation at vout (the drain): vout

RD
+ vout

r0
+ gmvgs = 0

• Note since we’re calculating open loop gain, there’s no current flowing in or out of the
output

* vgs = vg − vs = vin − 0 = vin so we have vout

RD
+ vout

r0
+ gmvin = 0 which we can now use to

solve for Av0 = vout

vin
* This works out to Av0 = −gm(r0 ∥ RD) or −gmRD if ignoring channel length modulation
* Note that since gm and RD are always positive, this is an inverting amplifier

– Generally, common source amplifiers have high open-loop gain (more amplification) and high input
resistance (loads input less), but generally high output resistance (susceptible to output loading)

* These are often used near the input – the large gain bumps the signal up from the noise floor
and the high input resistance is good

– Now find the input resistance Rin = vin

iin
* For this circuit, it is trivial: Rin = RG since no current goes through the gate
* We can simply take a large RG to increase the input resistance

• RG is part of the DC bias point but not any of the other variables, so we can more or less
take it to be anything we want

– The output resistance is Rout = vout

iout
* Note we need to assume some value for vin to do this calculation
* We assume vin = 0 to avoid double counting gain effects (i.e. we assume overall input voltage

is constant)
* If vin = 0, vgs = 0 so we get no current through the current source
* Therefore the equivalent resistance is r0 ∥ RD or RD without CLM

– Notice that we need a high RD to get high open loop gain, but this raises the output resistance

Amplifier Equivalent Models

Figure 63: Equivalent model for the amplifier we solved above.

• The amplifier circuit we solved for above could be replaced by the equivalent model above, where the
amplifier is in the middle; using this we can completely abstract away the amplifier

• The amplifier is replaced by Rin to ground, the voltage source Av0vin and output resistance Rout

– Notice that Rin forms a voltage divider with Rsig and Rout with RL

– Both loading effects will reduce Av0 ; we only get this total gain with a zero Rsig and infinite RL
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• Otherwise the actual gain is Avtotal =
(

Rin

Rin + Rsig

)
Av0

(
RL

RL + Rout

)

Example Amplifiers

Figure 64: Example: Common gate amplifier.

Figure 65: Transformed circuit.

• Example: Find the same 3 quantities in the circuit above, ignoring channel length modulation
– First transform the circuit

* RL is part of the load and Ri is part of the source, so both can be removed
* Replace C1, C2, C3 with short circuits, V + and V − to ground
* Replace the MOSFET with the default model

– Note that after shorting the capacitors, vg = 0 so we can effectively ignore R1, R2

– For Av0 we can write a node equation at vout:
vout

RD
+ gmvgs = 0
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Figure 66: Transformed circuit using the T-model.

* vgs = vg − vs = 0 − vin

* Therefore vout

RD
− gmvin = 0

* Av0 = gmRD

– Notice that the open-loop gain is positive, so this is a non-inverting amplifier
– Furthermore we can tweak gm and RD to potentially get a large open-loop gain
– Rin and Rout are more complicated to solve due to the current source; we can redraw the circuit

with the T-model to simplify things
– With the T-model, we can easily tell that Rin = RS ∥ 1

gm
– For Rout, with a vin = 0 we have no current through the current source, so Rout = RD

• Example: similar to the common source amplifier we solved before, but using a current mirror and no
bypass capacitor

– Note that this is not a proper amplifier, since we do not have a bypass capacitor
– Normally this would not be solvable if we replaced the current mirror with a current source, but

real world CLM effects provide a path for current
– Use the same procedure to transform this circuit:

* Replace VDD, VSS with shorts to ground
* Remove input source and load

– Notice that vgs1 is a function of vin, but vgs2 and vgs3 are not
* The sources of both of these MOSFETs are grounded, and there is no path from vin to their

gates
* In this scenario, we can assume vgs2 = vgs3 = 0 to simplify the circuit

– Now we can eliminate the current source from the second MOSFET, leaving us with only r02 , a
large resistance to ground

– This is equivalent to having a source resistor on the original MOSFET circuit
* Source resistors usually act like localized negative feedback – they reduce gain but improve

some other parameters, such as lowering output resistance
* However, unlike a normal source resistor, the CLM resistor is both hard to control and way

too big
– Write node equations:

* At vs1 or vD2 : vs1

r02

+ vs1 − vout

r01

− gm1vgs1 = 0
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Figure 67: Second example circuit.

Figure 68: Transformed second example circuit.
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• Note vgs1 = vin − vs1

* At vout:
vout

r01

+ vout − vs1

r01

+ gm1vgs1 = 0

* Add the equations: vs1

r02

+ vout

r01

= 0 =⇒ vs1 = − r02

RD
vout

* Substitute into one of the equations, and Av0 = vout

vin
= − gm1r01RD

gm1r01r02 + r01 + r02 + RD

– Sine the CLM resistances are high, this is approximately RD

r02
* As expected, the negative feedback reduces the gain, approximately by dividing by the

resistance value
* However since r02 is much bigger than RD, we will have a gain much less than 1, so this is

not practical
* This is why source resistors are typically in the ohms or hundreds of ohms range

– Input resistance is simply RG, which has not changed
– Recall that when calculating output resistance only, we assume an input voltage of zero to avoid

double-counting gain effects
* Assuming vin = 0 gives us vgs1 = −vs1 , which is not necessarily zero
* We can brute force this by using a test output current
* However in this case we have a cascode connection, we can replace the entire thing with a

single resistor to ground RA

* RA = (1 + gm1r01)r02 + r01 ≈ gm1r01r02

* Therefore the output resistance is simply RA ∥ RD, but since RD is much smaller than RA,
the output resistance is still about RD

Figure 69: Cascode connection.

Lecture 21, Nov 29, 2023
Multi-Stage Amplifier Example

• Typically, for a multi-transistor amplifier, we can look at positions of the capacitors to draw dividing
lines

– Everything to the right of C1 and the left of C3 is the actual amplifier
– C2 divides the two individual amplifier stages

• Because we have a model for loading effects, we can analyze each stage separately
• The first stage is a common-gate amplifier, while the second stage is a common drain amplifier
• For a common-gate amplifier, as we have derived, Avg1

= gm1RD1 , RIN1 = RS1 ∥ 1
gm1

, ROUT1 = RD1

– We can see that the standard results do not change if we draw this out in small signal domain
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Figure 70: Multi-stage amplifier.

Figure 71: Amplifier in small signal domain.
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• For the common-drain amplifier:
– Redraw the circuit using a T-model
– For Rout:

* Assuming vin = 0, the gate is grounded
* Rout = RS2 ∥ 1

gm2

* Source resistors tend to be small (kilohms or smaller), but 1
gm

is usually in the range of ohms
to tens of ohms, so the second term will dominate

* This gives us an output resistance in the range of tens of ohms or smaller, which is good
– For Rin, we simply have RG2 , since no current flows into the gate

* We can easily make Rin relatively large
– For Av0 :

* We can write a node equation at vout2

* vout2

RS2

− gm2vgs2 = 0 where vgs2 = vin2 − vout2

* Av0 = gm2RS2

gm2RS2 + 1
* Note since typically gm2RS2 ≫ 1, the gain is close to unity; in fact, the gain cannot ever be

greater than 1
– This configuration is often called a source-follower – typically, it follows the voltage at the source

without amplification, but increases the available power that can be output
• The common-gate amplifier amplifies the voltage, while the common-drain amplifier amplifies the power
• Now we can solve for the input/output resistances and voltage gain for the whole circuit

– Rin for the whole circuit is simply Rin1

– Rout for the whole circuit is simply Rout2 , assuming an input voltage of zero
– We don’t have information about the source and load, so we will find the open circuit gain Av0 for

the whole circuit
– Av0 = Av01

Av02

Rin2

Rin2 + Rout1
– In general, for multiple stages, the overall input resistance is the input resistance of the first stage;

the overall output resistance is the output resistance of the last stage; the voltage gain is the
product of all voltage gains, with a resistor divider between each pair of stages

Lecture 22, Dec 1, 2023
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